搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

十字结构银纳米线的表面等离极化激元分束特性

张永元 罗李娜 张中月

引用本文:
Citation:

十字结构银纳米线的表面等离极化激元分束特性

张永元, 罗李娜, 张中月

Surface plasmon polaritons splitting properties of silver cross nanowires

Zhang Yong-Yuan, Luo Li-Na, Zhang Zhong-Yue
PDF
导出引用
  • 金属纳米线波导可以将光局域在亚波长尺度内传播, 在纳米光子集成回路方面有着重要的作用. 本文应用有限元方法, 研究了十字结构银纳米线的表面等离极化激元分束特性. 结果表明, 不同模式的表面等离极化激元在十字结构三个分支的输出依赖于端面的几何结构参数. 此外, 研究还发现由于不同模式表面等离极化激元叠加, 在十字结构的分支上出现了周期性电场分布.
    Since metallic nanowires can confine light in nanoscale beyond the diffraction limit, metallic nanowires play an important role in nanophotonic integrated circuits. In this paper, a silver nanowire waveguide with a cross is proposed and its surface plasmon polaritons (SPPs) splitting properties of the cross at λ = 532 nm are studied by the finite element method. The nanowire has a square shape with its side length of a. Results show that the outputs for different input modes depend on the geometric parameters of the nanowires. For SPPs with TM0 mode, there are similar intensities in different waveguide directions with smaller side length. With the increase of a, the intensity in the original waveguide direction increases monotonically, and those in the perpendicular direction will decrease monotonically. For SPPs with HE1 mode and HE-1 mode, most of the energy propagate along the original waveguide direction for smaller a. With the increase of a, the intensity in the original waveguide direction decreases dramatically. For SPPs with HE1 mode, the cross blocks most of the energy in three directions for larger a. In addition to the splitting effect of it, the cross also performs a function of mode conversion. For the input SPPs with TM0 mode, the output of SPPs along the perpendicular waveguide direction can be converted to the HE-1 mode. For the input SPPs with HE1 mode, the output of SPPs along the perpendicular waveguide direction can be converted to the TM0 mode. Due to the superposition of electric fields of different SPPs modes in the perpendicular waveguide direction occur the steady-state and periodic electric field distributions.
    • 基金项目: 国家自然科学基金(批准号: 11004160)、中央高校基本科研业务费专项基金(编号: GK201303007)和西安科技大学培育基金(编号: 2010045)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11004160), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. GK201303007), and the Fostering Fund of Xian University of Science and Technology of China (Grant No. 2010045).
    [1]

    Raether H 1988 Surface Plasmons (Berlin Heidelberg: Springer-Verlag)

    [2]

    Li X L, Zhang Z D, Wang H, Y, Xiong Z H, Zhang Z Y 2011 Acta Phys. Sin. 60 047807 (in Chinese) [李雪莲, 张志东, 王红艳, 熊祖洪, 张中月 2011 物理学报 60 047807]

    [3]

    Lamprecht B, Krenn J R, Schider G, Ditlbacher H, Salerno M, Felidj N, Leitner A, Aussenegg F R, Weeber J C 2001 Appl. Phys. Lett. 79 51

    [4]

    Zia R, Selker M D, Brongersma M L 2005 Phys. Rev. B 71 165431

    [5]

    Degiron A, Cho S Y, Harrison C, Jokerst N M, Dellagiacoma C, Martin Olivier J F, Smith D R 2008 Phys. Rev. A 77 021804

    [6]

    Breukelaar I, Charbonneau R, Berini P 2006 Appl. Phys. Lett. 88 05119

    [7]

    Maier S A, Kik P G, Atwater H A 2003 Appl. Phys. Lett. 81 1714

    [8]

    Bozhevolnyi S I, Volkov V S, Devaux E, Ebbesen T W 2005 Phys. Rev. Lett. 95 046802

    [9]

    Pile D F P, Gramotnev D K 2004 Opt. Lett. 29 1069

    [10]

    Maier S A, Friedman M D, Barclay P E, Painter O. 2005 Appl. Phys. Lett. 86 171486

    [11]

    Fu Y L, Hu X Y, Lu C C, Yue S, Yang H, Gong Q H 2012 Nano Lett. 12 5784

    [12]

    Economou C, Peeiffer C A, Ngai K L 1974 Phys. Rev. B 71 3038

    [13]

    Prade B, Vinet J Y 1994 Journal of Lightwave Technology 12 6

    [14]

    Schroter U, Dereux A 2001 Phys. Rev. B 64 125420

    [15]

    Novotny L, Hafner C 1994 Phys. Rev. B 50 4094

    [16]

    Yang P F, Gu Y, Gong Q H 2008 Chin. Phys. B 17 3880

    [17]

    Guo Y N, Xue W R, Zhang W M 2009 Acta Phys. Sin. 58 4168 (in Chinese) [郭亚楠, 薛文瑞, 张文梅 2009 物理学报 58 4168]

    [18]

    Oulton R F, Sorger V J, Genov D A, Pile D F, Zhang X 2008 Nature Photonics 2 496

    [19]

    Li X Y, Guo X, Wang D L, Tong L M 2014 Optics Communications. 323 119

    [20]

    Krenn J R, Lamprecht B, Ditlbacher H, Schider G, Salerno M, Leitner A, Aussenegg F R 2002 Europhys Lett. 60 663

    [21]

    Zou C L, Sun F W, Xiao Y F, Dong C H, Chen X D, J M Cui, Gong Q, Han Z F, Guo G C 2010 Appl. Phys. Lett. 97 183102

    [22]

    Li Q, Qiu M 2013 Opt. Express 21 8587

    [23]

    Sun S L, Chen HT, Zheng J W, Guo G Y 2013 Opt. Express 21 14591

    [24]

    Wang W H, Yang Q, Fan F G, Xu H X, Wang Z L 2011 Nano Lett. 11 1603

    [25]

    Li Z P, Bao K, Fang Y R, Huang Y Z, Nordlander P, Xu H X 2010 Nano Lett. 10 1831

    [26]

    Zhang S P, Wei H, Bao K, Ha 発 anson U, Halas N J, Nordlander P, Xu H X 2011 Phys. Rev. Lett. 107 096801

    [27]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

  • [1]

    Raether H 1988 Surface Plasmons (Berlin Heidelberg: Springer-Verlag)

    [2]

    Li X L, Zhang Z D, Wang H, Y, Xiong Z H, Zhang Z Y 2011 Acta Phys. Sin. 60 047807 (in Chinese) [李雪莲, 张志东, 王红艳, 熊祖洪, 张中月 2011 物理学报 60 047807]

    [3]

    Lamprecht B, Krenn J R, Schider G, Ditlbacher H, Salerno M, Felidj N, Leitner A, Aussenegg F R, Weeber J C 2001 Appl. Phys. Lett. 79 51

    [4]

    Zia R, Selker M D, Brongersma M L 2005 Phys. Rev. B 71 165431

    [5]

    Degiron A, Cho S Y, Harrison C, Jokerst N M, Dellagiacoma C, Martin Olivier J F, Smith D R 2008 Phys. Rev. A 77 021804

    [6]

    Breukelaar I, Charbonneau R, Berini P 2006 Appl. Phys. Lett. 88 05119

    [7]

    Maier S A, Kik P G, Atwater H A 2003 Appl. Phys. Lett. 81 1714

    [8]

    Bozhevolnyi S I, Volkov V S, Devaux E, Ebbesen T W 2005 Phys. Rev. Lett. 95 046802

    [9]

    Pile D F P, Gramotnev D K 2004 Opt. Lett. 29 1069

    [10]

    Maier S A, Friedman M D, Barclay P E, Painter O. 2005 Appl. Phys. Lett. 86 171486

    [11]

    Fu Y L, Hu X Y, Lu C C, Yue S, Yang H, Gong Q H 2012 Nano Lett. 12 5784

    [12]

    Economou C, Peeiffer C A, Ngai K L 1974 Phys. Rev. B 71 3038

    [13]

    Prade B, Vinet J Y 1994 Journal of Lightwave Technology 12 6

    [14]

    Schroter U, Dereux A 2001 Phys. Rev. B 64 125420

    [15]

    Novotny L, Hafner C 1994 Phys. Rev. B 50 4094

    [16]

    Yang P F, Gu Y, Gong Q H 2008 Chin. Phys. B 17 3880

    [17]

    Guo Y N, Xue W R, Zhang W M 2009 Acta Phys. Sin. 58 4168 (in Chinese) [郭亚楠, 薛文瑞, 张文梅 2009 物理学报 58 4168]

    [18]

    Oulton R F, Sorger V J, Genov D A, Pile D F, Zhang X 2008 Nature Photonics 2 496

    [19]

    Li X Y, Guo X, Wang D L, Tong L M 2014 Optics Communications. 323 119

    [20]

    Krenn J R, Lamprecht B, Ditlbacher H, Schider G, Salerno M, Leitner A, Aussenegg F R 2002 Europhys Lett. 60 663

    [21]

    Zou C L, Sun F W, Xiao Y F, Dong C H, Chen X D, J M Cui, Gong Q, Han Z F, Guo G C 2010 Appl. Phys. Lett. 97 183102

    [22]

    Li Q, Qiu M 2013 Opt. Express 21 8587

    [23]

    Sun S L, Chen HT, Zheng J W, Guo G Y 2013 Opt. Express 21 14591

    [24]

    Wang W H, Yang Q, Fan F G, Xu H X, Wang Z L 2011 Nano Lett. 11 1603

    [25]

    Li Z P, Bao K, Fang Y R, Huang Y Z, Nordlander P, Xu H X 2010 Nano Lett. 10 1831

    [26]

    Zhang S P, Wei H, Bao K, Ha 発 anson U, Halas N J, Nordlander P, Xu H X 2011 Phys. Rev. Lett. 107 096801

    [27]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

  • [1] 王悦, 王伦, 孙柏逊, 郎鹏, 徐洋, 赵振龙, 宋晓伟, 季博宇, 林景全. 表面等离激元与入射光共同作用下的金纳米结构近场调控. 物理学报, 2023, 72(17): 175202. doi: 10.7498/aps.72.20230514
    [2] 农洁, 张伊祎, 韦雪玲, 姜鑫鹏, 李宁, 王冬迎, 肖思洋, 陈泓廷, 张振荣, 杨俊波. 电介质/金属/电介质膜系实现可见光波段高透兼容激光隐身研究. 物理学报, 2023, 72(17): 177802. doi: 10.7498/aps.72.20230855
    [3] 谷馨, 张惠芳, 李明雨, 陈俊雅, 何英. 三椭圆谐振腔耦合波导中可调谐双重等离子体诱导透明效应的理论分析. 物理学报, 2022, 71(24): 247301. doi: 10.7498/aps.71.20221365
    [4] 管福鑫, 董少华, 何琼, 肖诗逸, 孙树林, 周磊. 表面等离极化激元的散射及波前调控. 物理学报, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
    [5] 权家琪, 圣宗强, 吴宏伟. 基于人工表面等离激元结构的全向隐身. 物理学报, 2019, 68(15): 154101. doi: 10.7498/aps.68.20190283
    [6] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [7] 王帅, 邓子岚, 王发强, 王晓雷, 李向平. 光子角动量在环形金属纳米孔异常透射过程中的作用. 物理学报, 2019, 68(7): 077801. doi: 10.7498/aps.68.20182017
    [8] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [9] 祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤. 基于十字连通形环形谐振腔金属-介质-金属波导的折射率传感器和滤波器. 物理学报, 2018, 67(19): 197301. doi: 10.7498/aps.67.20180758
    [10] 祁云平, 周培阳, 张雪伟, 严春满, 王向贤. 基于塔姆激元-表面等离极化激元混合模式的单缝加凹槽纳米结构的增强透射. 物理学报, 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [11] 王维, 高社生, 孟阳. 型谐振腔结构的光学透射特性. 物理学报, 2017, 66(1): 017301. doi: 10.7498/aps.66.017301
    [12] 吴晨骏, 程用志, 王文颖, 何博, 龚荣洲. 基于十字形结构的相位梯度超表面设计与雷达散射截面缩减验证. 物理学报, 2015, 64(16): 164102. doi: 10.7498/aps.64.164102
    [13] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究. 物理学报, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [14] 秦艳, 曹威, 张中月. 内嵌矩形腔楔形金属狭缝的增强透射. 物理学报, 2013, 62(12): 127302. doi: 10.7498/aps.62.127302
    [15] 罗松, 付统, 张中月. 内嵌银纳米棒圆形银缝隙结构中的法诺共振现象. 物理学报, 2013, 62(14): 147303. doi: 10.7498/aps.62.147303
    [16] 钟明亮, 李山, 熊祖洪, 张中月. 十字形银纳米结构的表面等离子体光子学性质. 物理学报, 2012, 61(2): 027803. doi: 10.7498/aps.61.027803
    [17] 张志东, 赵亚男, 卢东, 熊祖洪, 张中月. 基于圆弧谐振腔的金属-介质-金属波导滤波器的数值研究. 物理学报, 2012, 61(18): 187301. doi: 10.7498/aps.61.187301
    [18] 陈园园, 邹仁华, 宋钢, 张恺, 于丽, 赵玉芳, 肖井华. 纳米银线波导中表面等离极化波激发和辐射的偏振特性研究. 物理学报, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [19] 王珊珊, 高劲松, 梁凤超, 王岩松, 陈新. 多频段十字分形频率选择表面. 物理学报, 2011, 60(5): 050703. doi: 10.7498/aps.60.050703
    [20] 缪江平, 吴宗汉, 孙承休, 孙岳明. 表面等离极化激元对电荷输运影响的自洽场理论研究. 物理学报, 2004, 53(8): 2728-2733. doi: 10.7498/aps.53.2728
计量
  • 文章访问数:  5448
  • PDF下载量:  321
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-23
  • 修回日期:  2014-12-12
  • 刊出日期:  2015-05-05

/

返回文章
返回