搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面等离激元结构光照明显微成像技术研究进展

张崇磊 辛自强 闵长俊 袁小聪

引用本文:
Citation:

表面等离激元结构光照明显微成像技术研究进展

张崇磊, 辛自强, 闵长俊, 袁小聪

Research progress of plasmonic structure illumination microscopy

Zhang Chong-Lei, Xin Zi-Qiang, Min Chang-Jun, Yuan Xiao-Cong
PDF
导出引用
  • 结构光照明显微成像技术(SIM)因其高分辨、宽场、快速成像的优势,在生物医学成像领域发挥了不可估量的作用.结构光照明显微成像技术与动态可控的亚波长表面等离激元条纹相结合,可以在不借助非线性效应的情况下,将传统SIM的分辨率从2倍于衍射极限频率提升到3-4倍,此外还有抑制背景噪声、提升信噪比的能力,在近表面的生物医学成像应用中有重要价值.本文介绍了表面等离激元结构光照明显微成像技术的原理,并总结了近几年国内外的相关研究进展.
    Structure illumination microscopy (SIM) is a novel imaging technique with advantages of high spatial resolution, wide imaging field and fast imaging speed. By illuminating the sample with patterned light and analyzing the information about Moir fringes outside the normal range of observation, SIM can achieve about 2-fold higher in resolution than the diffraction limit, thus it has played an important role in the field of biomedical imaging. In recent years, to further improve the resolution of SIM, people have proposed a new technique called plasmonic SIM (PSIM), in which the dynamically tunable sub-wavelength surface plasmon fringes are used as the structured illuminating light and thus the resolution reaches to 3-4 times higher than the diffraction limit. The PSIM technique can also suppress the background noise and improve the signal-to-noise ratio, showing great potential applications in near-surface biomedical imaging. In this review paper, we introduce the principle and research progress of PSIM. In Section 1, we first review the development of optical microscope, including several important near-field and far-field microscopy techniques, and then introduce the history and recent development of SIM and PSIM techniques. In Section 2, we present the basic theory of PSIM, including the dispersion relation and excitation methods of surface plasmon, the principle and imaging process of SIM, and the principle of increasing resolution by PSIM. In Section 3, we review the recent research progress of two types of PSIMs in detail. The first type is the nanostructure-assisted PSIM, in which the periodic metallic nanostructures such as grating or antenna array are used to excite the surface plasmon fringes, and then the shift of fringes is modulated by changing the angle of incident light. The resolution of such a type of PSIM is mainly dependent on the period of nanostructure, thus can be improved to a few tens of nanometers with deep-subwavelength structure period. The other type is the all-optically controlled PSIM, in which the structured light with designed distribution of phase or polarization (e.g. optical vortex) is used as the incident light to excite the surface plasmon fringes on a flat metal film, and then the fringes are dynamically controlled by modulating the phase or polarization of incident light. Without the help of nanostructure, such a type of PSIM usually has a resolution of about 100 nm, but benefits from the structureless excitation of plasmonic fringes in an all-optical configuration, thereby showing more dynamic regulation and reducing the need to fabricate nanometer-sized complex structures. In the final Section, we summarize the features of PSIM and discuss the outlook for this technique. Further studies are needed to improve the performance of PSIM and to expand the scope of practical applications in biomedical imaging.
      通信作者: 闵长俊, cjmin@szu.edu.cn;xcyuan@szu.edu.cn ; 袁小聪, cjmin@szu.edu.cn;xcyuan@szu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61427819,61422506,61605118)、国家重点基础研究发展计划(批准号:2015CB352004)和国家重点研发计划(批准号:2016YFC0102401)资助的课题.
      Corresponding author: Min Chang-Jun, cjmin@szu.edu.cn;xcyuan@szu.edu.cn ; Yuan Xiao-Cong, cjmin@szu.edu.cn;xcyuan@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61427819, 61422506, 61605118), the National Basic Research Program of China (Grant No. 2015CB352004), and the National Key Research and Development Program of China (Grant No. 2016YFC0102401).
    [1]

    Born M, Wolf E 2009 Principles of Optics (Amsterdam: Elsevier)

    [2]

    White J G, Amos W B 1987 Nature 328 183

    [3]

    Sheppard C J R, Wilson T 1981 J. Microsc. 124 107

    [4]

    Bek A, Vogelgesang R, Kern K 2006 Rev. Sci. Instrum. 77 043703

    [5]

    Betzig E, Trautman J K 1991 Science 251 1468

    [6]

    Reddick R C, Warmack R J, Ferrell T L 1989 Phys. Rev. B 39 767

    [7]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [8]

    Durant S, Liu Z, Steele J M, Zhang X 2006 JOSA B 23 2383

    [9]

    Liu Z, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C, Zhang X 2007 Nano Lett. 7 403

    [10]

    Xiong Y, Liu Z, Sun C, Zhang X 2007 Nano Lett. 7 3360

    [11]

    Lee H, Liu Z, Xiong Y, Sun C, Zhang X 2007 Opt. Express 15 15886

    [12]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [13]

    Klar T A, Hell S W 1999 Opt. Lett. 24 954

    [14]

    Rust M J, Bates M, Zhuang X 2006 Nature Methods 3 793

    [15]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Hess H F 2006 Science 313 1642

    [16]

    Gustafsson M G L 2000 J. Microsc. 198 82

    [17]

    Gustafsson M G L 2005 PNAS 102 13081

    [18]

    Kner P, Chhun B B, Griffis E R, Winoto L, Gustafsson M G 2009 Nature Methods 6 339

    [19]

    Shao L, Kner P, Rego E H, Gustafsson M G 2011 Nature Methods 8 1044

    [20]

    Schermelleh L, Carlton P M, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso M C, Agand D A, Gustafsson M G, Leonhardt H, Sedat J W 2008 Science 320 1332

    [21]

    Chung E, Kim D, Cui Y, Kim Y H, So P T 2007 Biophys. J. 93 1747

    [22]

    Fiolka R, Beck M, Stemmer A 2008 Opt. Lett. 33 1629

    [23]

    Gliko O, Brownell W E, Saggau P 2009 Opt. Lett. 34 836

    [24]

    Planchon T A, Gao L, Milkie D E, Davidson M W, Galbraith J A, Galbraith C G, Betzig E 2011 Nature Methods 8 417

    [25]

    Li D, Shao L, Chen B C, Zhang X, Zhang M, Moses B, Milkie D E, Beach J R, Hammer J A, Pasham M, Kirchhausen T, Baird M A, Davidson M W, Xu P, Betzig E Science 349 aab3500

    [26]

    Wei F, Liu Z 2010 Nano Lett. 10 2531

    [27]

    Wei F, Lu D, Shen H, Wan W, Ponsetto J L, Huang E, Liu Z 2014 Nano Lett. 14 4634

    [28]

    Fernndez-Domnguez A I, Liu Z, Pendry J B 2015 ACS Photon. 2 341

    [29]

    Ponsetto J L, Wei F, Liu Z 2014 Nanoscale 6 5807

    [30]

    Tan P S, Yuan X C, Yuan G H, Wang Q 2010 Appl. Phys. Lett. 97 241109

    [31]

    Wei S, Lei T, Du L, Zhang C, Chen H, Yang Y, Zhu S W, Yuan X C 2015 Opt. Express 23 30143

    [32]

    Zhang C, Min C, Du L, Yuan X C 2016 Appl. Phys. Lett. 108 201601

    [33]

    Ertsgaard C T, McKoskey R M, Rich I S, Lindquist N C 2014 ACS Nano 8 10941

    [34]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [35]

    Wood R W 1902 Proc. Phys. Soc. London 18 269

    [36]

    Fano U 1941 JOSA 31 213

    [37]

    Ritchie R H 1957 Phys. Rev. 106 874

    [38]

    Ferrell R A 1958 Phys. Rev. 111 1214

    [39]

    Powell C J, Swan J B 1960 Phys. Rev. 118 640

    [40]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 91 667

    [41]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [42]

    Liu Z W, Wei Q H, Zhang X 2005 Nano Lett. 5 957

    [43]

    Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, Stacy A M, Zhang X 2008 Science 321 930

    [44]

    Raether H 1988 Surface Plasmons (Berlin: Springer)

    [45]

    Otto A 1968 Zeitschriftfr Physik 216 398

    [46]

    Kretschmann E, Raether H 1968 Znaturforsch 23 2135

    [47]

    Sarid D 1981 Phys. Rev. Lett. 47 1927

    [48]

    Hecht B, Bielefeldt H, Novotny L, Inouye Y, Pohl D W 1996 Phys. Rev. Lett. 77 1889

    [49]

    Hornauer D, Kapitza H, Raether H 1974 J. Physics D: Appl. Phys. 7 L100

    [50]

    Nash D J, Cotter N P K, Wood E L, Bradberry G W, Sambles J R 1995 J. Modern Opt. 42 243

    [51]

    Kano H, Mizuguchi S, Kawata S 1998 JOSA B 15 1381

    [52]

    https://wwwzeisscom/microscopy/int/products/imaging-systems/apotome-2-for-biology.html [2017-03-01]

    [53]

    Dan D, Lei M, Yao B, Wang W, Winterhalder M, Zumbusch A, Qi Y, Xia L, Yan S, Yang Y, Gao P, Zhao W 2013 Sci. Reports 3 1116

    [54]

    Chakrova N, Rieger B 2016 JOSA A 33 B12

    [55]

    Gjonaj B 2012 Digital Plasmonics: from Concept to Microscopy (Amsterdam: University of Amsterdam)

    [56]

    Wang Q, Bu J, Tan P S, Yuan G H, Teng J H, Wang H, Yuan X C 2012 Plasmonics 7 427

    [57]

    Yuan G, Wang Q, Yuan X 2012 Opt. Lett. 37 2715

    [58]

    Cao S, Wang T, Xu W, Liu H, Zhang H, Hu B, Yu W 2016 Sci. Reports 6 23460

    [59]

    Cao S, Wang T, Sun Q, Hu B, Yu W 2017 Opt. Express 25 3863

    [60]

    Zhang J, See C W, Somekh M G, Pitter M C, Liu S G 2004 Appl. Phys. Lett. 85 5451

    [61]

    Chen H, Du L, Wu X, Zhu S, Yang Y, Fang H, Yuan X 2016 Appl. Phys. Lett. 109 261904

  • [1]

    Born M, Wolf E 2009 Principles of Optics (Amsterdam: Elsevier)

    [2]

    White J G, Amos W B 1987 Nature 328 183

    [3]

    Sheppard C J R, Wilson T 1981 J. Microsc. 124 107

    [4]

    Bek A, Vogelgesang R, Kern K 2006 Rev. Sci. Instrum. 77 043703

    [5]

    Betzig E, Trautman J K 1991 Science 251 1468

    [6]

    Reddick R C, Warmack R J, Ferrell T L 1989 Phys. Rev. B 39 767

    [7]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [8]

    Durant S, Liu Z, Steele J M, Zhang X 2006 JOSA B 23 2383

    [9]

    Liu Z, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C, Zhang X 2007 Nano Lett. 7 403

    [10]

    Xiong Y, Liu Z, Sun C, Zhang X 2007 Nano Lett. 7 3360

    [11]

    Lee H, Liu Z, Xiong Y, Sun C, Zhang X 2007 Opt. Express 15 15886

    [12]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [13]

    Klar T A, Hell S W 1999 Opt. Lett. 24 954

    [14]

    Rust M J, Bates M, Zhuang X 2006 Nature Methods 3 793

    [15]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Hess H F 2006 Science 313 1642

    [16]

    Gustafsson M G L 2000 J. Microsc. 198 82

    [17]

    Gustafsson M G L 2005 PNAS 102 13081

    [18]

    Kner P, Chhun B B, Griffis E R, Winoto L, Gustafsson M G 2009 Nature Methods 6 339

    [19]

    Shao L, Kner P, Rego E H, Gustafsson M G 2011 Nature Methods 8 1044

    [20]

    Schermelleh L, Carlton P M, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso M C, Agand D A, Gustafsson M G, Leonhardt H, Sedat J W 2008 Science 320 1332

    [21]

    Chung E, Kim D, Cui Y, Kim Y H, So P T 2007 Biophys. J. 93 1747

    [22]

    Fiolka R, Beck M, Stemmer A 2008 Opt. Lett. 33 1629

    [23]

    Gliko O, Brownell W E, Saggau P 2009 Opt. Lett. 34 836

    [24]

    Planchon T A, Gao L, Milkie D E, Davidson M W, Galbraith J A, Galbraith C G, Betzig E 2011 Nature Methods 8 417

    [25]

    Li D, Shao L, Chen B C, Zhang X, Zhang M, Moses B, Milkie D E, Beach J R, Hammer J A, Pasham M, Kirchhausen T, Baird M A, Davidson M W, Xu P, Betzig E Science 349 aab3500

    [26]

    Wei F, Liu Z 2010 Nano Lett. 10 2531

    [27]

    Wei F, Lu D, Shen H, Wan W, Ponsetto J L, Huang E, Liu Z 2014 Nano Lett. 14 4634

    [28]

    Fernndez-Domnguez A I, Liu Z, Pendry J B 2015 ACS Photon. 2 341

    [29]

    Ponsetto J L, Wei F, Liu Z 2014 Nanoscale 6 5807

    [30]

    Tan P S, Yuan X C, Yuan G H, Wang Q 2010 Appl. Phys. Lett. 97 241109

    [31]

    Wei S, Lei T, Du L, Zhang C, Chen H, Yang Y, Zhu S W, Yuan X C 2015 Opt. Express 23 30143

    [32]

    Zhang C, Min C, Du L, Yuan X C 2016 Appl. Phys. Lett. 108 201601

    [33]

    Ertsgaard C T, McKoskey R M, Rich I S, Lindquist N C 2014 ACS Nano 8 10941

    [34]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [35]

    Wood R W 1902 Proc. Phys. Soc. London 18 269

    [36]

    Fano U 1941 JOSA 31 213

    [37]

    Ritchie R H 1957 Phys. Rev. 106 874

    [38]

    Ferrell R A 1958 Phys. Rev. 111 1214

    [39]

    Powell C J, Swan J B 1960 Phys. Rev. 118 640

    [40]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 91 667

    [41]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [42]

    Liu Z W, Wei Q H, Zhang X 2005 Nano Lett. 5 957

    [43]

    Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, Stacy A M, Zhang X 2008 Science 321 930

    [44]

    Raether H 1988 Surface Plasmons (Berlin: Springer)

    [45]

    Otto A 1968 Zeitschriftfr Physik 216 398

    [46]

    Kretschmann E, Raether H 1968 Znaturforsch 23 2135

    [47]

    Sarid D 1981 Phys. Rev. Lett. 47 1927

    [48]

    Hecht B, Bielefeldt H, Novotny L, Inouye Y, Pohl D W 1996 Phys. Rev. Lett. 77 1889

    [49]

    Hornauer D, Kapitza H, Raether H 1974 J. Physics D: Appl. Phys. 7 L100

    [50]

    Nash D J, Cotter N P K, Wood E L, Bradberry G W, Sambles J R 1995 J. Modern Opt. 42 243

    [51]

    Kano H, Mizuguchi S, Kawata S 1998 JOSA B 15 1381

    [52]

    https://wwwzeisscom/microscopy/int/products/imaging-systems/apotome-2-for-biology.html [2017-03-01]

    [53]

    Dan D, Lei M, Yao B, Wang W, Winterhalder M, Zumbusch A, Qi Y, Xia L, Yan S, Yang Y, Gao P, Zhao W 2013 Sci. Reports 3 1116

    [54]

    Chakrova N, Rieger B 2016 JOSA A 33 B12

    [55]

    Gjonaj B 2012 Digital Plasmonics: from Concept to Microscopy (Amsterdam: University of Amsterdam)

    [56]

    Wang Q, Bu J, Tan P S, Yuan G H, Teng J H, Wang H, Yuan X C 2012 Plasmonics 7 427

    [57]

    Yuan G, Wang Q, Yuan X 2012 Opt. Lett. 37 2715

    [58]

    Cao S, Wang T, Xu W, Liu H, Zhang H, Hu B, Yu W 2016 Sci. Reports 6 23460

    [59]

    Cao S, Wang T, Sun Q, Hu B, Yu W 2017 Opt. Express 25 3863

    [60]

    Zhang J, See C W, Somekh M G, Pitter M C, Liu S G 2004 Appl. Phys. Lett. 85 5451

    [61]

    Chen H, Du L, Wu X, Zhu S, Yang Y, Fang H, Yuan X 2016 Appl. Phys. Lett. 109 261904

  • [1] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合. 物理学报, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [2] 葛阳阳, 何灼奋, 黄黎琳, 林丹樱, 曹慧群, 屈军乐, 于斌. 平场复用多焦点结构光照明超分辨显微成像. 物理学报, 2022, 71(4): 048704. doi: 10.7498/aps.71.20211712
    [3] 葛阳阳, 于斌. 平场复用多焦点结构光照明超分辨显微成像研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211712
    [4] 刘亮, 韩德专, 石磊. 等离激元能带结构与应用. 物理学报, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [5] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [6] 张佳, SamantaSoham, 王佳林, 王璐玮, 杨志刚, 严伟, 屈军乐. 一种用于线粒体受激辐射损耗超分辨成像的新型探针. 物理学报, 2020, 69(16): 168702. doi: 10.7498/aps.69.20200171
    [7] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [8] 千佳, 党诗沛, 周兴, 但旦, 汪召军, 赵天宇, 梁言生, 姚保利, 雷铭. 基于希尔伯特变换的结构光照明快速三维彩色显微成像方法. 物理学报, 2020, 69(12): 128701. doi: 10.7498/aps.69.20200352
    [9] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [10] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制. 物理学报, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [11] 李鑫, 吴立祥, 杨元杰. 矩形纳米狭缝超表面结构的近场增强聚焦调控. 物理学报, 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [12] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控. 物理学报, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [13] 周强, 林树培, 张朴, 陈学文. 旋转对称表面等离激元结构中极端局域光场的准正则模式分析. 物理学报, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [14] 闫博, 陈力, 陈爽, 李猛, 殷一民, 周江宁. 结构光照明技术在二维激光诱导荧光成像去杂散光中的应用. 物理学报, 2019, 68(21): 218701. doi: 10.7498/aps.68.20190977
    [15] 朱学涛, 郭建东. 新型高分辨率电子能量损失谱仪与表面元激发研究. 物理学报, 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [16] 林丹樱, 屈军乐. 超分辨成像及超分辨关联显微技术研究进展. 物理学报, 2017, 66(14): 148703. doi: 10.7498/aps.66.148703
    [17] 刘鸿吉, 刘双龙, 牛憨笨, 陈丹妮, 刘伟. 基于环形抽运光的红外超分辨显微成像方法. 物理学报, 2016, 65(23): 233601. doi: 10.7498/aps.65.233601
    [18] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [19] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究. 物理学报, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [20] 梁高峰, 赵青, 陈欣, 王长涛, 赵泽宇, 罗先刚. 基于多层膜结构的亚波长光栅研究. 物理学报, 2012, 61(10): 104203. doi: 10.7498/aps.61.104203
计量
  • 文章访问数:  3803
  • PDF下载量:  442
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-29
  • 修回日期:  2017-04-27
  • 刊出日期:  2017-07-05

表面等离激元结构光照明显微成像技术研究进展

    基金项目: 国家自然科学基金(批准号:61427819,61422506,61605118)、国家重点基础研究发展计划(批准号:2015CB352004)和国家重点研发计划(批准号:2016YFC0102401)资助的课题.

摘要: 结构光照明显微成像技术(SIM)因其高分辨、宽场、快速成像的优势,在生物医学成像领域发挥了不可估量的作用.结构光照明显微成像技术与动态可控的亚波长表面等离激元条纹相结合,可以在不借助非线性效应的情况下,将传统SIM的分辨率从2倍于衍射极限频率提升到3-4倍,此外还有抑制背景噪声、提升信噪比的能力,在近表面的生物医学成像应用中有重要价值.本文介绍了表面等离激元结构光照明显微成像技术的原理,并总结了近几年国内外的相关研究进展.

English Abstract

参考文献 (61)

目录

    /

    返回文章
    返回