搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合光瞳滤波的超表面透镜设计

钟润晖 凌进中 李洋洋 杨旭东 王晓蕊

引用本文:
Citation:

融合光瞳滤波的超表面透镜设计

钟润晖, 凌进中, 李洋洋, 杨旭东, 王晓蕊

Design of Meta-surface Lens Combining with Pupil Filter

Zhong Runhui, Ling Jinzhong, Li Yangyang, Yang Xudong, Wang Xiaorui
PDF
导出引用
  • 超表面透镜是一种通过调制表面微单元结构参数来实现对光波相位、振幅和偏振的精确调控的微型平面透镜.相较于普通透镜,具有尺寸小、重量轻、集成度高等优点,是光子芯片的核心器件.为突破衍射极限,进一步提升超表面透镜的聚焦性能和成像分辨率,需结合现有的光场调控技术,对入射光场进行多维信息调控.参考光瞳滤波器的超分辨成像原理,设计了一种融合型超表面透镜,可同时实现透镜聚焦和光瞳滤波器的功能,从而获得超越衍射极限的聚焦光斑.通过参数优化,最终实现了半高全宽为323.4 nm(~0.51λ)的焦斑,较未加光瞳滤波器的超表面透镜(半高全宽为376 nm)性能提升了近15%.本文设计的融合型超表面透镜展示了全面光场调控对其光学性能的提升,在未来有望代替传统透镜,并在纳米显微成像、纳米光刻、虚拟现实以及3D显示等领域发挥重要作用.
    Metasurface lenses are miniature flat lenses that achieve precise control of the phase, amplitude, and polarization of incident light by modulating the parameters of each unit on the substrate. Compared with conventional optical lenses, they have the advantages of small size, light weight, and high integration, and are the core components of photonic chips. Currently, the hot topics for metasurface lens are broadband and achromatic devices, and there is still little attention paid to the resolution improvement. To break through the diffraction limit and further improve the focusing performance and imaging resolution of metasurface lenses, we use unit cells to perform multi-dimensional modulation of the incident light field. Specifically, in this paper, we combine phase modulation of metasurface lens with a pupil filtering for the first time, which has been widely applied in traditional microscopy imaging and adaptive optics, and has demonstrated powerful resolution enhancement effects. The fusion of these two technologies will continue to improve the imaging performance of metasurface lenses and expand their application fields.
    In this article, we firstly design a single-cell super-surface lens composed of a Silicon nanofin array and a silica substrate as a benchmark for comparing the performance of fused super-surface lens. The lens achieves an ideal focal spot for incident light at 633 nm, resulting in a FWHM of 376.0 nm. Then, a three-zone phase modulating pupil filter was proposed and designed with the same aperture of metasurface lens, which has a phase jump of 0-π-0 from inside to outside of the aperture. From the simulation results, the main lobe size of the focal spot has been compressed obviously. In the optimization, its structural parameters were scanned for the best performance, and the optimal set of structural parameters was selected and applied in the fusion metasurface lens. Finally, the fused metasurface lens was designed by combining the metasurface lens with the three-zone phase modulating pupil filter, and the FWHM of its focal spot was compressed to 323.4 nm (≈0.51λ), which is not only 15% smaller than original metasurface lens’s FWHM of 376.0 nm, but also much smaller than the diffraction limit of 0.61λ/NA (when NA=0.9, it is approximately 429.0 nm). This result preliminarily demonstrates the super-resolution performance of the fused super-surface lens. With the comprehensive regulation of multi-dimensional information, such as amplitude, polarization, and vortex, the fused super-surface optical lens will achieve more excellent super-resolution focusing and imaging performance, and will also be widely used in the fields of super-resolution imaging, virtual reality, and 3-D optical display, due to its characteristics of high resolution, high integration, and high miniaturization.
  • [1]

    Feng M D,, Wang J F,, Ma H,, Mo W D,, Ye H J,, Qu S B 2013 J. Appl. Phys. 114(7) 074508

    [2]

    Lin D M, Fan P Y, Hasman E, Brongersma M L 2014 Science 345(6194) 298-302

    [3]

    West P R, Stewart J L, Kildishev A V, Shalaev V M, Shkunov V V, Strohkendl F, Zakharenkov Y A, Dodds R K, Byren R 2014 Optics Express 22(21) 26212-26221

    [4]

    Li S H, Li J S 2019 Aip Advances 9(3) 035146

    [5]

    Marlek SC,Ee HS,Agarwal R 2017 Nano Letters 17(6) 3641-3645

    [6]

    Cai B,Wu L,Zhu X W,Cheng Z Z, Cheng Y Z 2024 Results in Physics 58 107509

    [7]

    Li Y L,Xu J F,Liu, F H,Xu L Z,Fang B,Li, C X 2024 Physica Scripta 99(7) 075536

    [8]

    M Khorasaninejad, F Capasso 2017 Science. 358 6367

    [9]

    Hu T, Xia R, Wang S C,Yang Z Y,Zhao M,2024 Journal of Physics D: Applied Physics. 57(35) 355103

    [10]

    Xu P,Li X C, Xiao Yu F,Yang T, Zhang X L,Huang H X,Wang M Y,Yuan X,Xu H D 2023 Acta Phys. Sin. 72(1) 014208 [徐平, 李雄超, 肖钰斐, 杨拓, 张旭琳, 黄海漩, 王梦禹, 袁霞, 徐海东 2023 物理学报 72(1) 014208]

    [11]

    Zhang Q S, Guo D, Shen C S, Chen Z F, Bai N F 2024 Physica Scripta 99(1) 015516

    [12]

    GTD Francia. Super-gain antennas and optical resolving power[J]. Nuovo Cimento. Suppl., 1952,9 426-438

    [13]

    Luo Z Y, Stephen M. Kuebler 2014 Optics Communications. 315 176

    [14]

    S. Chakraborty,S.C. Bera;,A.K. Chakraborty Optik - International Journal for Light and Electron Optics 122(6) 549

    [15]

    (in Chinese) [王吉明,赫崇军,刘友文,杨凤,田威,吴彤 2016 物理学报 65(4) 044202

    Wang J M,He C J,Liu Y W,Yang F,Tian Wei,Wu T 2016 Acta Phys. Sin. 65(4) 044202

    [16]

    Liu S,Qi S X,Li Y K,Wei B Y,Li P,Zhao L 2023 Light: Science & Applications 11(1) 219

    [17]

    Ding H P, Li Q H, Zou W Y 2004 Acta Optica Sinica 24(9) 1177 (in Chinese) [丁洪萍, 李庆辉, 邹文艺 2004 光学学报 24(9) 1177]

    [18]

    Toshiyuki HORIUCHI,Katsuhiro HARADA,Seitaro MTSUO 2019 Denki Kagaku oyobi Kogyo Butsuri Kagaku 63(6) 536

    [19]

    Zhao L N 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [赵丽娜 2018 博士学位论文 (成都:电子科技大学) ]

    [20]

    Liu T 2013 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [刘涛 2013 博士学位论文 (哈尔滨: 哈尔滨工业大学) ]

    [21]

    Chen J L,Mo D F,Jiang M D,Zhu H Y 2024 Chinese Journal of Lasers 51(13) 1310001 (in Chinese) [陈俊林, 莫德锋, 蒋梦蝶, 朱海勇等 2024 中国激光 51(13) 1310001]

  • [1] 杨浩智, 聂梦娇, 马光鹏, 曹慧群, 林丹樱, 屈军乐, 于斌. 基于数字微镜器件的快速超分辨晶格结构光照明显微研究. 物理学报, doi: 10.7498/aps.73.20240216
    [2] 谷同凯, 王兰兰, 国阳, 蒋维涛, 史永胜, 杨硕, 陈金菊, 刘红忠. 光盘上集成的液体微透镜阵列与可重构超分辨成像. 物理学报, doi: 10.7498/aps.72.20222251
    [3] 凌进中, 郭金坤, 王昱程, 刘鑫, 王晓蕊. 基于倏逝波照明的空间移频超分辨成像技术研究. 物理学报, doi: 10.7498/aps.72.20230934
    [4] 葛阳阳, 何灼奋, 黄黎琳, 林丹樱, 曹慧群, 屈军乐, 于斌. 平场复用多焦点结构光照明超分辨显微成像. 物理学报, doi: 10.7498/aps.71.20211712
    [5] 葛阳阳, 于斌. 平场复用多焦点结构光照明超分辨显微成像研究. 物理学报, doi: 10.7498/aps.70.20211712
    [6] 张佳, SamantaSoham, 王佳林, 王璐玮, 杨志刚, 严伟, 屈军乐. 一种用于线粒体受激辐射损耗超分辨成像的新型探针. 物理学报, doi: 10.7498/aps.69.20200171
    [7] 田源, 葛浩, 卢明辉, 陈延峰. 声学超构材料及其物理效应的研究进展. 物理学报, doi: 10.7498/aps.68.20190850
    [8] 高强, 王晓华, 王秉中. 基于宽带立体超透镜的远场超分辨率成像. 物理学报, doi: 10.7498/aps.67.20172608
    [9] 刘雄波, 林丹樱, 吴茜茜, 严伟, 罗腾, 杨志刚, 屈军乐. 荧光寿命显微成像技术及应用的最新研究进展. 物理学报, doi: 10.7498/aps.67.20180320
    [10] 张崇磊, 辛自强, 闵长俊, 袁小聪. 表面等离激元结构光照明显微成像技术研究进展. 物理学报, doi: 10.7498/aps.66.148701
    [11] 林丹樱, 屈军乐. 超分辨成像及超分辨关联显微技术研究进展. 物理学报, doi: 10.7498/aps.66.148703
    [12] 王吉明, 赫崇君, 刘友文, 杨凤, 田威, 吴彤. 基于可调谐复振幅滤波器的超长焦深矢量光场. 物理学报, doi: 10.7498/aps.65.044202
    [13] 刘鸿吉, 刘双龙, 牛憨笨, 陈丹妮, 刘伟. 基于环形抽运光的红外超分辨显微成像方法. 物理学报, doi: 10.7498/aps.65.233601
    [14] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像. 物理学报, doi: 10.7498/aps.63.224201
    [15] 李恒, 于斌, 陈丹妮, 牛憨笨. 高效双螺旋点扩展函数相位片的设计与实验研究. 物理学报, doi: 10.7498/aps.62.124201
    [16] 赵维谦, 唐芳, 邱丽荣, 刘大礼. 轴对称矢量光束聚焦特性研究现状及其应用. 物理学报, doi: 10.7498/aps.62.054201
    [17] 梁高峰, 赵青, 陈欣, 王长涛, 赵泽宇, 罗先刚. 基于多层膜结构的亚波长光栅研究. 物理学报, doi: 10.7498/aps.61.104203
    [18] 王伟, 周常河, 余俊杰. 三环位相型光瞳滤波器的横向超分辨与轴向焦深扩展. 物理学报, doi: 10.7498/aps.60.024201
    [19] 云茂金, 万 勇, 孔伟金, 王 美, 刘均海, 梁 伟. 可调谐位相型光瞳滤波器的横向光学超分辨和轴向扩展焦深. 物理学报, doi: 10.7498/aps.57.194
    [20] 刘 力, 邓小强, 王桂英, 徐至展. 改善共焦系统轴向分辨率的位相型光瞳滤波器. 物理学报, doi: 10.7498/aps.50.48
计量
  • 文章访问数:  163
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-25

/

返回文章
返回