-
光子纳米喷流,近年来逐渐引起科研人员的关注。它具有独特的性质,例如高强度、高局域性和亚波长尺度的聚焦能力,是一种具有波长量级强聚焦的光束。由于光子纳米喷流聚焦处的半高全宽通常可以超越衍射极限,且可以保持较长距离的高强度喷流,因而光子纳米喷流能够显著提高成像分辨率。本研究通过数值模拟的方法探讨了非均匀镀膜微球在不同覆盖面积、照射角度及不同浸没介质折射率下,光子纳米喷流的特性。结果表明,非均匀镀膜微球能产生具有"S"型光子钩特性和超衍射极限的光子纳米喷流,并在特定条件下触发谐振现象。这一研究为非均匀镀膜微球在超分辨成像等领域的应用提供了理论支持。Photonic nanojet (PNJ) has gradually attracted the attention of researchers in the recent years. PNJ has unique properties, such as high intensity, high localization and subwavelength scale focusing ability. PNJ is a narrow beam within the wavelength scale. The Full-width at Half Maximum (FWHM) of PNJ at the focus can go beyond the diffraction limit while maintaining high intensity with a long distance , which could significantly enhance the imaging resolution. This study explores the characteristics of PNJ through numerical simulation methods, focusing on patchy microspheres under various conditions including coverage area, incident angle, and the refractive index of the immersion medium. The findings reveal that when the microsphere size remains constant, the PNJ performs optimally when the coverage area reaches 69%. Under this condition, adjusting the incident angle to -5.74° precisely positions the PNJ focal point on the microsphere surface. Furthermore, at this specific angle, the FWHM is reduced to 180 nm, significantly surpassing the conventional diffraction limit. This optimization strategy not only facilitates super-resolution focusing but also substantially enhances both the intensity and efficiency of the PNJ. Additionally, the study demonstrates that the PNJ performance improves when the refractive index ratio between the microsphere coating and the immersion medium approaches 1.4. Notably, a resonance effect occurs when the refractive index ratio reaches 1.48, resulting in enhanced PNJ performance. Under this condition, the PNJ focal point remains on the microsphere surface, the FWHM remains at 180 nm, while the light intensity is further amplified, reaching approximately three times the intensity of the PNJ generated by microspheres without the resonance effect. This research provides theoretical support for the application of patchy microspheres in fields such as super-resolution imaging.
-
[1] Zhou R, Wu M X, Shen F, Hong M H 2017 Acta Phys. Sin. 66 140702(in Chinese) [周锐, 吴梦雪, 沈飞, 洪明辉 2017 物理学报 66 140702]
[2] Wang S Y, Zhang H J, Zhang D X 2013 Acta Phys. Sin. 62 034207(in Chinese) [王淑莹, 章海军, 张冬仙 2013 物理学报 62 034207]
[3] Song Y, Yang X B, Yan B, Wang C, Sun J M, Xiong D X 2020 Acta Phys. Sin. 69 134201(in Chinese) [宋扬, 杨西斌, 闫冰, 王驰, 孙建美, 熊大曦 2020 物理学报 69 134201]
[4] Chen Z, Taflove A, Backman V 2004 Opt. Express 12 1214
[5] Lee J Y, Hong B H, Kim W Y, Min S K, Kim Y, Jouravlev M V, Bose R, Kim K S, Hwang I C, Kaufman L J, Wong C W, Kim P, Kim K S 2009 Nature 460 498
[6] Wang Z, Guo W, Li L, Luk’yanchuk B, Khan A, Liu Z, Chen Z, Hong M 2011 Nat. Commun. 2 218
[7] Hao X, Kuang C, Liu X, Zhang H, Li Y 2011 Appl. Phys. Lett. 99 203102
[8] Lee S, Li L, Wang Z, Guo W, Yan Y, Wang T 2013 Appl. Opt. 52 7265
[9] Allen K W, Farahi N, Li Y, Limberopoulos N I, Walker D E, Urbas A M, Astratov V N 2015 Opt. Express 23 24484
[10] Liu C Y, Lo W C 2017 Opt. Commun. 399 104
[11] Yang S, Cao Y, Shi Q, Wang X, Chen T, Wang J, Ye Y H 2019 J. Phys. Chem. C 123 28353
[12] Cao Y, Yang S, Wang J, Shi Q, Ye Y H 2020 J. Appl. Phys. 127 233103
[13] Liu X, Hu S, Tang Y 2020 Photonics 7 84
[14] Xu C, Yang T, Zou P, Ye R 2022 Advanced Optical Imaging Technologies V (China:SPIE) 12316
[15] Tam W G, Corriveau R 1978 J. Opt. Soc. Am. 68 763
[16] Dong Z, Yang X C 2009 Acta Opt. Sin. 29 1296 (in Chinese) [董哲, 杨洗陈 2009 光学学报 29 1296]
[17] Devilez A, Stout B, Bonod N, Popov E 2008 Opt. Express 16 14200
[18] Ritchie R H, Eldridge H B 1962 Phys. Rev. 126 1935
[19] Shin Y B, Kim H M, Jung Y, Chung B H 2010 Sens. Actuators B Chem. 150 1
[20] Shi L P, Chong T C, Yao H B, Tan P K, Miao X S 2002 J. Appl. Phys. 91 10209
[21] Luo X, Ishihara T 2004 Appl. Phys. Lett. 84 4780
[22] Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photonics 4 611
[23] Peterson A W, Halter M, Tona A, Plant A L 2014 BMC Cell Biol. 15 35
[24] Wei F, Lu D, Shen H, Wan W, Ponsetto J L, Huang E, Liu Z 2014 Nano Lett. 14 4634
[25] Sun T, Chen H, Yang S, Hu J, Wang C 2018 Opt. Laser Technol. 108 551
计量
- 文章访问数: 141
- PDF下载量: 6
- 被引次数: 0