搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀镀膜微球产生的光子纳米喷流特性研究

贾睿 杨智焜 潘晓燕 彭起

引用本文:
Citation:

非均匀镀膜微球产生的光子纳米喷流特性研究

贾睿, 杨智焜, 潘晓燕, 彭起

Characteristics of photonic nanojets generated by patchy microspheres

JIA Rui, YANG Zhikun, PAN Xiaoyan, PENG Qi
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 光子纳米喷流, 近年来逐渐引起科研人员的关注. 它具有独特的性质, 例如高强度、高局域性和亚波长尺度的聚焦能力, 是一种具有波长量级强聚焦的光束. 由于光子纳米喷流聚焦处的半高全宽通常可以超越衍射极限, 且可以保持较长距离的高强度喷流, 因而光子纳米喷流能够显著提高成像分辨率. 本研究通过数值模拟的方法探讨了非均匀镀膜微球在不同覆盖面积、照射角度及不同浸没介质折射率下, 光子纳米喷流的特性. 结果表明, 非均匀镀膜微球能产生具有“S”型光子钩特性和超衍射极限的光子纳米喷流, 并在特定条件下触发谐振现象. 这一研究为非均匀镀膜微球在超分辨成像等领域的应用提供了理论支持.
    Photonic nanojet (PNJ) has gradually attracted the attention of researchers in the recent years. PNJ has unique properties, such as high intensity, high localization and subwavelength scale focusing ability, making it a narrow beam with wavelength scale. The full-width at half maximum (FWHM) of PNJ at the focus can exceed the diffraction limit while maintaining high intensity with a long distance , which can significantly enhance the imaging resolution. In this work, the characteristics of PNJ are explored through numerical simulation, with a focus on studying the patchy microspheres under various conditions, including coverage area, incident angle, and the refractive index of the immersion medium. The findings reveal that when the microsphere size is fixed and the coverage area accounts for 69%, the performance of PNJ is optimal. Under this condition, adjusting the incident angle to -5.74° can accurately position the PNJ focal point on the microsphere surface. Furthermore, at this specific angle, the FWHM is reduced to 180 nm, significantly exceeding the traditional diffraction limit. This optimization strategy not only facilitates super-resolution focusing, but also greatly enhances both the intensity and efficiency of the PNJ. Additionally, this study demonstrates that the PNJ performance improves when the refractive index ratio between the microsphere coating and the immersion medium approaches 1.4. Notably, a resonance effect occurs when the refractive index ratio reaches 1.48, resulting in enhanced PNJ performance. In this case, the PNJ focal point remains on the surface of the microsphere , with an FWHM of 180 nm, while the light intensity is further amplified to approximately three times the intensity of the PNJ generated by the microspheres without resonance effect. This research provides theoretical support for the application of patchy microspheres in fields such as super-resolution imaging.
  • 图 1  PNJ的特征

    Fig. 1.  The characteristics of PNJ.

    图 2  非均匀镀膜微球仿真示意图

    Fig. 2.  Simulation diagram of patchy microspheres.

    图 3  非均匀镀膜微球示意图 (a)横截面图; (b)镀膜面积占比为27%; (c)镀膜面积占比为48%; (d)镀膜面积占比为69%

    Fig. 3.  Schematic diagram of patchy microspheres: (a) Cross sectional view; (b) the patchy area is 27%; (c) the patchy area is 48%; (d) the patchy area is 69%.

    图 4  非均匀镀膜微球镀膜面积占比为27%时PNJ的特征 (a)倾斜照明角度为30°时的电场强度横截面图; (b) PNJ的焦距和FWHM随倾斜照明角度的变化; (c)倾斜照明角度为–17.46°时焦点处强度分布随y的变化

    Fig. 4.  Characteristics of PNJ when the coating area ratio is 27%: (a) Cross-sectional view of electric field intensity when the angle of oblique illumination is 30°; (b) the variety of the focal length and FWHM of PNJ with the change of oblique illumination angle; (c) intensity distribution at focal point with y when oblique illumination is –17.46°.

    图 5  非均匀镀膜微球镀膜面积占比为48%时PNJ的特征 (a)倾斜照明角度为–5.74°时的电场强度横截面图; (b) PNJ的焦距和FWHM随倾斜照明角度的变化; (c)倾斜照明角度为0°时焦点处强度分布随y的变化; (d)倾斜照明角度为30°和–30°时的电场强度横截面图; (e)倾斜照明角度为11.54°时焦点处强度分布随y的变化

    Fig. 5.  Characteristics of PNJ when the coating area ratio is 48%: (a) Cross-sectional view of electric field intensity when the angle of oblique illumination is –5.74°; (b) the variety of the focal length and FWHM with the change of oblique illumination angle; (c) intensity distribution at focal point with y when oblique illumination is –0°; (d) cross-sectional view of electric field intensity when the angle of oblique illumination is 30° and –30°; (e) intensity distribution at focal point with y when oblique illumination is 11.54°.

    图 6  非均匀镀膜微球镀膜面积占比为69%时PNJ的特征 (a) –5.74°时的电场强度横截面图; (b) PNJ的焦距和FWHM随倾斜照明角度的变化; (c)倾斜照明角度为0°时焦点处强度分布随y的变化; (d)倾斜照明角度为–5.74°时焦点处强度分布随y的变化

    Fig. 6.  Characteristics of PNJ when the coating area ratio is 48%: (a) Cross-sectional view of electric field intensity when the angle of oblique illumination is –5.74°; (b) the variety of the focal length and FWHM with the change of oblique illumination angle; (c) intensity distribution at focal point with y when oblique illumination is 0°; (d) intensity distribution at focal point with y when oblique illumination is –5.74°.

    图 7  浸没介质与非均匀镀膜微球的折射率比示意图

    Fig. 7.  Schematic diagram of the refractive index ratio between immersion medium and patchy microspheres.

    图 8  电场强度横截面图 (a)折射率比为1.1; (b)折射率比为1.4; (c)折射率比为1.7; (d)折射率比为2.0

    Fig. 8.  Electric field intensity cross-section diagram: (a) The refractive index ratio is 1.1; (b) the refractive index ratio is 1.4; (c) the refractive index ratio is 1.7; (d) the refractive index ratio is 2.0.

    图 9  PNJ焦距和FWHM随折射率比的变化

    Fig. 9.  Variation of PNJ’s focal length and FWHM with the refractive index ratio.

    图 10  光子纳米喷流电场强度分布图 (a)折射率比为1.34时场强分布; (b)折射率比为1.36时场强分布; (c)折射率比为1.38时场强分布; (d)折射率比为1.44时场强分布; (e)折射率比为1.34时局部放大图; (f)折射率比为1.36时局部放大图; (g)折射率比为1.38时局部放大图; (h)折射率比为1.44时局部放大图

    Fig. 10.  PNJ’s electric field intensity distribution: (a) Field intensity distribution when the refractive index ratio is 1.34; (b) field intensity distribution when the refractive index ratio is 1.36; (c) field intensity distribution when the refractive index ratio is 1.38; (d) field intensity distribution when the refractive index ratio is 1.44; (e) partial enlargement when the refractive index ratio is 1.34; (f) partial enlargement when the refractive index ratio is 1.36; (g) partial enlargement when the refractive index ratio is 1.38; (h) partial enlargement when the refractive index ratio is 1.44.

    图 11  折射率比为1.48时的谐振现象

    Fig. 11.  Resonance phenomenon when the refractive index ratio is 1.48.

    图 12  PNJ焦距和FWHM随折射率比的变化

    Fig. 12.  Variation of PNJ’s focal length and FWHM with the refractive index ratio.

    图 13  PNJ焦点处强度随折射率变化

    Fig. 13.  Variation of PNJ’s intensity with the refractive index ratio.

    表 1  不同镀膜模型比较

    Table 1.  Comparison of different patchy models.

    微球模型文献类型优点缺陷应用意义
    PDMS包覆BaTiO3
    玻璃微球
    [9]均匀镀膜通过异丙醇挥发调节距离蒸发速率不稳定, 表面湿润性控制差, 无法长时间动态成像为超分辨率显微成像提供了一种新的途径
    核壳微纤维[10]均匀镀膜大面积超分辨成像, 等离子体效应增强聚焦, 高强度聚焦成像方向受限, 纤芯折射率变化可导致散射展示了通过结构设计来增强成像分辨率的可能性
    金属-介电纳米结构[12]非均匀镀膜增强的近场效应, 有效的等离子体-微球相互作用PDMS聚合物耦合方式复杂, 环境影响大增强的近场电场效应提供了一种新的超分辨率成像技术
    PS涂层BTG微球[13]均匀镀膜增强PNJ强度, 改善聚焦效果, 提升超分辨成像效果仅能在液体介质中进行实验在液体介质中实现了更高的分辨率成像
    AI薄膜包覆介电微球[14]非均匀镀膜光子钩提升成像效果, 提供新的PNJ应用未系统研究谐振现象为非均匀镀膜微球的应用提供了新的可能性
    本文非均匀镀膜微球 非均匀镀膜特性优化的光子钩, 提升超分辨成像性能, 谐振现象提升聚焦强度为优化PNJ设计提供了重要依据, 将谐振现象引入PNJ特性分析
    下载: 导出CSV
  • [1]

    周锐, 吴梦雪, 沈飞, 洪明辉 2017 物理学报 66 140702Google Scholar

    Zhou R, Wu M X, Shen F, Hong M H 2017 Acta Phys. Sin. 66 140702Google Scholar

    [2]

    王淑莹, 章海军, 张冬仙 2013 物理学报 62 034207Google Scholar

    Wang S Y, Zhang H J, Zhang D X 2013 Acta Phys. Sin. 62 034207Google Scholar

    [3]

    宋扬, 杨西斌, 闫冰, 王驰, 孙建美, 熊大曦 2020 物理学报 69 134201Google Scholar

    Song Y, Yang X B, Yan B, Wang C, Sun J M, Xiong D X 2020 Acta Phys. Sin. 69 134201Google Scholar

    [4]

    Chen Z, Taflove A, Backman V 2004 Opt. Express 12 1214Google Scholar

    [5]

    Lee J Y, Hong B H, Kim W Y, Min S K, Kim Y, Jouravlev M V, Bose R, Kim K S, Hwang I C, Kaufman L J, Wong C W, Kim P, Kim K S 2009 Nature 460 498Google Scholar

    [6]

    Wang Z B, Guo W, Li L, Luk’yanchuk B, Khan A, Liu Z, Chen Z C, Hong M H 2011 Nat. Commun. 2 218Google Scholar

    [7]

    Hao X, Kuang C F, Liu X, Zhang H J, Li Y H 2011 Appl. Phys. Lett. 99 203102Google Scholar

    [8]

    Lee S, Li L, Wang Z B, Guo W, Yan Y Z, Wang T 2013 Appl. Opt. 52 7265Google Scholar

    [9]

    Allen K W, Farahi N, Li Y, Limberopoulos N I, Walker D E, Urbas A M, Astratov V N 2015 Opt. Express 23 24484Google Scholar

    [10]

    Liu C Y, Lo W C 2017 Opt. Commun. 399 104Google Scholar

    [11]

    Yang S L, Cao Y R, Shi Q F, Wang X Q, Chen T, Wang J G, Ye Y H 2019 J. Phys. Chem. C 123 28353Google Scholar

    [12]

    Cao Y R, Yang S L, Wang J G, Shi Q F, Ye Y H 2020 J. Appl. Phys. 127 233103Google Scholar

    [13]

    Liu X, Hu S, Tang Y 2020 Photonics 7 84Google Scholar

    [14]

    Xu C, Yang T, Zou P, Ye R 2022 Advanced Optical Imaging Technologies V (China: SPIE)p12316

    [15]

    Tam W G, Corriveau R 1978 J. Opt. Soc. Am. 68 763Google Scholar

    [16]

    董哲, 杨洗陈 2009 光学学报 29 1296Google Scholar

    Dong Z, Yang X C 2009 Acta Opt. Sin. 29 1296Google Scholar

    [17]

    Devilez A, Stout B, Bonod N, Popov E 2008 Opt. Express 16 14200Google Scholar

    [18]

    Ritchie R H, Eldridge H B 1962 Phys. Rev. 126 1935Google Scholar

    [19]

    Shin Y B, Kim H M, Jung Y, Chung B H 2010 Sens. Actuators B Chem. 150 1Google Scholar

    [20]

    Shi L P, Chong T C, Yao H B, Tan P K, Miao X S 2002 J. Appl. Phys. 91 10209Google Scholar

    [21]

    Luo X, Ishihara T 2004 Appl. Phys. Lett. 84 4780Google Scholar

    [22]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photonics 4 611Google Scholar

    [23]

    Peterson A W, Halter M, Tona A, Plant A L 2014 BMC Cell Biol. 15 35Google Scholar

    [24]

    Wei F F, Lu D, Shen H, Wan W W, Ponsetto J L, Huang E, Liu Z W 2014 Nano Lett. 14 4634Google Scholar

    [25]

    Sun T, Chen H Y, Yang S, Hu J P, Wang C H 2018 Opt. Laser Technol. 108 551Google Scholar

  • [1] 钟润晖, 凌进中, 李洋洋, 杨旭东, 王晓蕊. 融合光瞳滤波的超表面透镜设计. 物理学报, doi: 10.7498/aps.74.20241490
    [2] 杨浩智, 聂梦娇, 马光鹏, 曹慧群, 林丹樱, 屈军乐, 于斌. 基于数字微镜器件的快速超分辨晶格结构光照明显微研究. 物理学报, doi: 10.7498/aps.73.20240216
    [3] 吴婉玲, 王向珂, 虞华康, 李志远. 基于微纳光纤双模式干涉的亚波长聚焦光场及光捕获应用. 物理学报, doi: 10.7498/aps.73.20240181
    [4] 凌进中, 郭金坤, 王昱程, 刘鑫, 王晓蕊. 基于倏逝波照明的空间移频超分辨成像技术研究. 物理学报, doi: 10.7498/aps.72.20230934
    [5] 葛阳阳, 何灼奋, 黄黎琳, 林丹樱, 曹慧群, 屈军乐, 于斌. 平场复用多焦点结构光照明超分辨显微成像. 物理学报, doi: 10.7498/aps.71.20211712
    [6] 葛阳阳, 于斌. 平场复用多焦点结构光照明超分辨显微成像研究. 物理学报, doi: 10.7498/aps.70.20211712
    [7] 张佳, SamantaSoham, 王佳林, 王璐玮, 杨志刚, 严伟, 屈军乐. 一种用于线粒体受激辐射损耗超分辨成像的新型探针. 物理学报, doi: 10.7498/aps.69.20200171
    [8] 田源, 葛浩, 卢明辉, 陈延峰. 声学超构材料及其物理效应的研究进展. 物理学报, doi: 10.7498/aps.68.20190850
    [9] 李鑫, 吴立祥, 杨元杰. 矩形纳米狭缝超表面结构的近场增强聚焦调控. 物理学报, doi: 10.7498/aps.68.20190728
    [10] 范启蒙, 尹成友. 高对比度目标的电磁逆散射超分辨成像. 物理学报, doi: 10.7498/aps.67.20180266
    [11] 刘雄波, 林丹樱, 吴茜茜, 严伟, 罗腾, 杨志刚, 屈军乐. 荧光寿命显微成像技术及应用的最新研究进展. 物理学报, doi: 10.7498/aps.67.20180320
    [12] 张崇磊, 辛自强, 闵长俊, 袁小聪. 表面等离激元结构光照明显微成像技术研究进展. 物理学报, doi: 10.7498/aps.66.148701
    [13] 林丹樱, 屈军乐. 超分辨成像及超分辨关联显微技术研究进展. 物理学报, doi: 10.7498/aps.66.148703
    [14] 刘鸿吉, 刘双龙, 牛憨笨, 陈丹妮, 刘伟. 基于环形抽运光的红外超分辨显微成像方法. 物理学报, doi: 10.7498/aps.65.233601
    [15] 胡昌宝, 许吉, 丁剑平. 介质填充型二次柱面等离激元透镜的亚波长聚焦. 物理学报, doi: 10.7498/aps.65.137301
    [16] 湛胜高, 梁斌明, 朱幸福, 陈家壁, 庄松林. 基于空气孔的光子晶体亚波长成像的特性研究. 物理学报, doi: 10.7498/aps.63.154212
    [17] 仲义, 许吉, 陆云清, 王敏娟, 王瑾. 基于一维金属光子晶体平凹镜的柱矢量光束亚波长聚焦. 物理学报, doi: 10.7498/aps.63.237801
    [18] 李恒, 于斌, 陈丹妮, 牛憨笨. 高效双螺旋点扩展函数相位片的设计与实验研究. 物理学报, doi: 10.7498/aps.62.124201
    [19] 梁高峰, 赵青, 陈欣, 王长涛, 赵泽宇, 罗先刚. 基于多层膜结构的亚波长光栅研究. 物理学报, doi: 10.7498/aps.61.104203
    [20] 厉以宇, 顾培夫, 李明宇, 张锦龙, 刘 旭. 波状结构二维光子晶体的自准直特性及亚波长成像的研究. 物理学报, doi: 10.7498/aps.55.2596
计量
  • 文章访问数:  373
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-10
  • 修回日期:  2025-02-17
  • 上网日期:  2025-02-25

/

返回文章
返回