搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微纳光纤双模式干涉的亚波长聚焦光场及光捕获应用

吴婉玲 王向珂 虞华康 李志远

引用本文:
Citation:

基于微纳光纤双模式干涉的亚波长聚焦光场及光捕获应用

吴婉玲, 王向珂, 虞华康, 李志远

Sub-wavelength focusing of light by the two-mode interference from an optical microfiber

Wu Wan-Ling, Wang Xiang-Ke, Yu Huakang, Li Zhi-Yuan
PDF
导出引用
  • 本文报道了一种基于微纳光纤中双模式干涉的亚波长聚焦方法。利用微纳光纤中两种特定导模在微纳光纤端面处的干涉效应,我们在微纳光纤端面处获得了单焦点或多焦点的聚焦光场,并可通过调节两个模式之间的相位差、功率比分别实现聚焦光场的焦深调谐、焦斑相对强度调谐,从而达到对纳米颗粒可调谐、选择性的捕获。根据干涉聚焦光场中不同焦点处所对应的捕获刚度和势阱深度的不同,可以对不同大小的纳米颗粒进行分类。这种微型化全光纤的亚波长聚焦方法,将可应用于操纵纳米颗粒、超分辨率光学成像和纳米光刻等领域。
    The ability to focus light at subwavelength scales is essential in modern photonics. Optical microfiber-based sub-wavelength focusing would allow a miniaturized, flexible and versatile tool to be superior for many applications such as biomedical imaging and optomechanics. When a single mode exits from the microfiber endface, it would experience significant diffraction into the free space. This situation could be altered by incorporating two-mode interference with its dependence on the distributions of E -field amplitude and phase. Here we report a novel approach to sub-wavelength focusing based on the two-mode interference from an optical microfiber. By utilizing unique distributions of electric field amplitude and phase of two interacting optical modes, interference field patterns with a single focus (via a two-mode set of HE11 and HE12) or multiple foci (via a two-mode set of HE11 and HE31) could be obtained. The constructed foci are then demonstrated to facilitate tunable and selective trapping of nanoparticles. Circular polarization of optical modes is utilized so as to improve the angular symmetry of sub-wavelength focusing patterns other than linear polarized optical modes. Our simulation results show the smallest focal spot could be produced from the EH11 and HE12 mode interference, with a full width at half-maximum (FWHM) of ~348 nm (0.65λ). Such a subwavelength focusing field is applied in optical trapping of an 85-nm-diameter polystyrene nanosphere. Further calculation reveals that stable trapping could be fulfilled with axial and transverse trap stiffness of 11.48 pN/(μm·W) and 64.98 pN/(μm·W) (via two-mode set of HE11 and HE12), as well as axial and transverse potential well of 101 kBT/W and 641 kBT/W via two-mode interference of HE11 and HE12. These values exhibit great improvement over conventional tapered fibers. Further investigations show that different foci (via a two-mode set of HE11 and HE31) exhibit distinct trap stiffnesses and potential wells, justifying the potential for nanoparticle size sorting. Based on the flexible, all-fiber device, this subwavelength focusing strategy by two-mode interference may find promising applications in optical manipulation, superresolution optical imaging, data storage and nanolithography.
  • [1]

    Lin Z, Liu K, Cao T, Hong M 2023 Opto-Electronic Advances 6 230029

    [2]

    Stoian R, Colombier J P 2020 Nanophotonics 9 4665

    [3]

    Li X, Cao Y, Tian N, Fu L, Gu M 2015 Optica 2 567

    [4]

    Lindfors K, Kalkbrenner T, Stoller P, Sandoghdar V 2004 Phys Rev Lett 93 037401

    [5]

    Yang H, Trouillon R, Huszka G, Gijs M A M 2016 Nano Lett 16 4862

    [6]

    Berthelot J, Aćimović S S, Juan M L, Kreuzer M P, Renger J, Quidant R 2014 Nat Nanotechnol 9 295

    [7]

    Li Y, Liu X, Li B 2019 Light Sci Appl 8 61

    [8]

    Pendry J B 2000 Phys Rev Lett 85 3966

    [9]

    Liu Z, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C, Zhang X 2007 Nano Lett 7 403

    [10]

    Lee S, Kim K, Kim S, Park H, Kim K, Lee B 2015 Optica 2 6

    [11]

    Genet C, Ebbesen T W 2007 Nature 445 39

    [12]

    Khorasaninejad M, Zhu A Y, Roques-Carmes C, Chen W T, Oh J, Mishra I, Devlin R C, Capasso F 2016 Nano Lett 16 7229

    [13]

    Garcı́a-Vidal F J, Martı́n-Moreno L, Lezec H J, Ebbesen T W 2003 Appl Phys Lett 83 4500

    [14]

    Yu H K, Liu B D, Wu W L, Li Z Y 2019 Acta Physica Sinica 68 149101

    [15]

    Huang F M, Zheludev N, Chen Y, Javier Garcia de Abajo F 2007 Appl Phys Lett 90 091119

    [16]

    Wei P, Chang W, Lee K, Lin E 2009 Opt Lett 34 1867

    [17]

    Wang T, Wang X, Kuang C, Hao X, Liu X 2010 Appl Phys Lett 97 231105

    [18]

    Wang X, Fu J, Liu X, Tong L 2009 Journal of the Optical Society of America A 26 1827

    [19]

    Liberale C, Minzioni P, Bragheri F, De Angelis F, Di Fabrizio E, Cristiani I 2007 Nat Photonics 1 723

    [20]

    Zhang Y, Liu Z, Yang J, Yuan L 2012 Opt Commun 285 4068

    [21]

    Fu J, Dong H, Fang W 2010 Appl Phys Lett 97 41114

    [22]

    Gong Y, Ye A, Wu Y, Rao Y, Yao Y, Xiao S 2013 Opt Express 21 16181

    [23]

    Zhang Y, Zhou Y, Tang X, Wang Z, Zhang Y, Liu Z, Zhang J, Yang J, Yuan L 2021 Opt Lett 46 3017

    [24]

    Li Y, Xin H, Liu X, Zhang Y, Lei H, Li B 2016 ACS Nano 10 5800

    [25]

    Li Y, Xin H, Lei H, Liu L, Li Y, Zhang Y, Li B 2016 Light Sci Appl 5 e16176

    [26]

    Rogers E T F, Savo S, Lindberg J, Roy T, Dennis M R, Zheludev N I 2013 Appl Phys Lett 102 31108

    [27]

    Huang H, Li Q, Fu J, Wu J, Lin F, Wu X 2015 Nanoscale 7 16504

    [28]

    Yuan G H, Rogers E T, Zheludev N I 2017 Light Sci Appl 6 e17036

    [29]

    Yu H, Fang W, Gu F, Qiu M, Yang Z, Tong L 2011 Phys Rev A (Coll Park) 83 053830

    [30]

    Wang S, Fu J, Qiu M, Huang K, Ma Z, Tong L 2008 Opt Express 16 8887

    [31]

    Mansuripur M, Zakharian A R 2009 Phys Rev A (Coll Park) 80 023823

    [32]

    Girard C, Dereux A, Martin O J F 1994 Phys Rev B 49 13872

    [33]

    Tong L, Lou J, Mazur E 2004 Opt Express 12 1025

    [34]

    Tang X, Zhang Y, Su W, Zhang Y, Liu Z, Yang X, Zhang J, Yang J, Yuan L 2019 Opt Lett 44 5165

    [35]

    Plidschun M, Ren H, Kim J, Förster R, Maier S A, Schmidt M A 2021 Light Sci Appl 10 57

    [36]

    Pradhan P, Sengupta D, Wang L, Tremblay C, LaRochelle S, Ung B 2017 Sci Rep 7 1552

    [37]

    Zhang W, Wei K, Huang L, Mao D, Jiang B, Gao F, Zhang G, Mei T, Zhao J 2016 Opt Express 24 19278

    [38]

    Ismaeel R, Lee T, Oduro B, Jung Y, Brambilla G 2014 Opt Express 22 11610

    [39]

    Xiao Ya-Ling, Liu Yan-Ge, Wang Zhi, Liu Xiao-Qi, Luo Ming-Ming 2015 Acta Physica Sinica 64 204207

    [40]

    Li Z, Kim M H, Wang C, Han Z, Shrestha S, Overvig A C, Lu M, Stein A, Agarwal A M, Lončar M, Yu N 2017 Nat Nanotechnol 12 675

  • [1] 刘鸿江, 刘逸飞, 谷付星. 基于深度学习的微纳光纤自动制备系统. 物理学报, doi: 10.7498/aps.73.20240171
    [2] 陆梦佳, 恽斌峰. 基于硅基砖砌型亚波长光栅的紧凑型模式转换器. 物理学报, doi: 10.7498/aps.72.20230673
    [3] 韩俊杰, 钱思贤, 朱传名, 黄志祥, 任信钢, 程光尚. 基于双极化编码超表面生成的双模式轨道角动量. 物理学报, doi: 10.7498/aps.72.20230457
    [4] 高兆琳, 刘瑞桦, 温凯, 马英, 李建郎, 郜鹏. 结构光照明相位/荧光双模式显微技术. 物理学报, doi: 10.7498/aps.71.20221518
    [5] 李慧嘉, 黄照词, 王文璇, 夏承遗. 新型双模式加权机制及其对网络计算的影响. 物理学报, doi: 10.7498/aps.70.20210453
    [6] 李鑫, 吴立祥, 杨元杰. 矩形纳米狭缝超表面结构的近场增强聚焦调控. 物理学报, doi: 10.7498/aps.68.20190728
    [7] 莫军, 冯国英, 杨莫愁, 廖宇, 周昊, 周寿桓. 基于石墨烯的宽带全光空间调制器. 物理学报, doi: 10.7498/aps.67.20180307
    [8] 李杰, 李蒙蒙, 孙立朋, 范鹏程, 冉洋, 金龙, 关柏鸥. 保偏微纳光纤倏逝场传感器. 物理学报, doi: 10.7498/aps.66.074209
    [9] 谷文浩, 常胜江, 范飞, 张选洲. 基于锑化铟亚波长阵列结构的太赫兹聚焦器件. 物理学报, doi: 10.7498/aps.65.010701
    [10] 王茹, 王向贤, 杨华, 叶松. TE0导模干涉刻写周期可调亚波长光栅理论研究. 物理学报, doi: 10.7498/aps.65.094206
    [11] 胡昌宝, 许吉, 丁剑平. 介质填充型二次柱面等离激元透镜的亚波长聚焦. 物理学报, doi: 10.7498/aps.65.137301
    [12] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, doi: 10.7498/aps.64.194201
    [13] 仲义, 许吉, 陆云清, 王敏娟, 王瑾. 基于一维金属光子晶体平凹镜的柱矢量光束亚波长聚焦. 物理学报, doi: 10.7498/aps.63.237801
    [14] 胡晓堃, 李江, 李贤, 陈耘辉, 栗岩锋, 柴路, 王清月. 太赫兹波发射晶体的亚波长微棱锥增透结构的设计与实验研究. 物理学报, doi: 10.7498/aps.62.060701
    [15] 刘颖刚, 车伏龙, 贾振安, 傅海威, 王宏亮, 邵敏. 微纳光纤布拉格光栅折射率传感特性研究. 物理学报, doi: 10.7498/aps.62.104218
    [16] 侯建平, 赵晨阳, 杨楠, 郝建苹, 赵建林. 微纳光纤端面反射特性的实验测量方法. 物理学报, doi: 10.7498/aps.62.144216
    [17] 于永江, 陈建农, 闫金良, 王菲菲. 聚焦径向调制Bessel-Gaussian光束实现亚波长尺寸纵向偏振光束. 物理学报, doi: 10.7498/aps.60.044205
    [18] 梁瑞冰, 孙琪真, 沃江海, 刘德明. 微纳尺度光纤布拉格光栅折射率传感的理论研究. 物理学报, doi: 10.7498/aps.60.104221
    [19] 李敏, 张志友, 石莎, 杜惊雷. 亚波长金属聚焦透镜结构参数的优化与分析. 物理学报, doi: 10.7498/aps.59.958
    [20] 刘玉玲, 卢振武. 亚波长衍射微透镜色散的数值分析. 物理学报, doi: 10.7498/aps.53.1782
计量
  • 文章访问数:  168
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 上网日期:  2024-03-30

/

返回文章
返回