搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型双模式加权机制及其对网络计算的影响

李慧嘉 黄照词 王文璇 夏承遗

引用本文:
Citation:

新型双模式加权机制及其对网络计算的影响

李慧嘉, 黄照词, 王文璇, 夏承遗

A new tunable weighting strategy for enhancing performance of network computation

Li Hui-Jia, Huang Zhao-Ci, Wang Wen-Xuan, Xia Cheng-Yi
PDF
HTML
导出引用
  • 高效率的网络分析方法对于分析、预测和优化现实群体行为具有重要的作用, 而加权机制作为网络重构化的重要方式, 在生物、工程和社会等各个领域都有极高的应用价值. 虽然已经得到越来越多的关注, 但是现有加权方法数量还很少, 而且在不同拓扑类型和结构特性现实网络中的效果和性能有待继续提高. 本文提出了一种新型的双模式加权机制, 该方法充分利用网络的全局和局部的重要拓扑属性(例如节点度、介数中心性和紧密中心性), 并构建了两种新型的运行模式: 一种是在原始模式中通过增加桥边的权重来提高同步能力; 另一种是在逆模式中通过弱化桥边的权重来提高聚类检测. 此外, 该加权机制仅受单一参数$ \alpha $的影响, 非常便于调控. 在人工基准网络和现实世界网络中的实验结果均验证了该模型的有效性, 可以广泛应用于大规模的现实世界网络中.
    For many real world systems ranging from biology to engineering, efficient network computation methods have attracted much attention in many applications. Generally, the performance of a network computation can be improved in two ways, i.e., rewiring and weighting. As a matter of fact, many real-world networks where an interpretation of efficient computation is relevant are weighted and directed. Thus, one can argue that nature might have assigned the optimal structure and weights to adjust the level of functionality. Indeed, in many neural and biochemical networks there is evidence that the synchronized and coordinated behavior may play important roles in the system’s functionality. The importance of the network weighting is not limited to the nature. In computer networks, for example, designing appropriate weights and directions for the connection links may enhance the ability of the network to synchronize the processes, thus leading the performance of computation to improve. In this paper, we propose a new two-mode weighting strategy by employing the network topological centralities including the degree, betweenness, closeness and communication neighbor graph. The weighting strategy consists of two modes, i.e., the original mode, in which the synchronizability is enhanced by increasing the weight of bridge edges, and the inverse version, in which the performance of community detection is improved by reducing the weight of bridge edges. We control the weight strategy by simply tuning a single parameter, which can be easily performed in the real world systems. We test the effectiveness of our model in a number of artificial benchmark networks as well as real-world networks. To the best of our knowledge, the proposed weighting strategy outperforms previously published weighting methods of improving the performance of network computation.
      通信作者: 李慧嘉, hjli@bupt.edu.cn
    • 基金项目: 北京邮电大学提升科技创新能力行动计划(批准号: 2020XD-A01-2)和国家自然科学基金(批准号: 71871233)资助的课题
      Corresponding author: Li Hui-Jia, hjli@bupt.edu.cn
    • Funds: Project supported by Fundamental Research Funds for the Central Universities of China (Grant No. 2020XD-A01-2) and the National Natural Science Foundation of China (Grant No. 71871233)
    [1]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [2]

    Barabasi A L, Albert R 1999 Science 286 509Google Scholar

    [3]

    Han Y, Zhu L, Cheng Z, Li J, Liu X 2020 IEEE Trans. Cybern. 50 1697Google Scholar

    [4]

    杨博, 刘大有, 刘继明, 金弟, 马海宾 2009 软件学报 20 54Google Scholar

    Yang B, Liu D Y, Liu J M, Jin D, Ma H B 2009 J. Software 20 54Google Scholar

    [5]

    Ding S, Yue Z, Yang S, Niu F, Zhang Y 2020 IEEE Trans. Ind. Inf. 32 2101Google Scholar

    [6]

    Liang W, Li K, Long J, Kui X, Zomaya A Y 2020 IEEE Trans. Ind. Inf. 16 2063Google Scholar

    [7]

    Lu M, Zhang Z, Qu Z, Kang Y 2019 IEEE Trans. Knowl. Data Eng. 31 1736Google Scholar

    [8]

    Ma X, Dong D, Wang Q 2019 IEEE Trans. Knowl. Data Eng. 31 273Google Scholar

    [9]

    Newman M E J, Girvan M 2004 Phys. Rev. E 69 026113Google Scholar

    [10]

    Clauset A, Newman M E J 2004 Phys. Rev. E 70 066111Google Scholar

    [11]

    Du W B, Zhou X L, Lordan O, Wang Z, Zhao C, Zhu Y B 2016 Transp. Res. Pt. E-Logist. Transp. Rev. 89 108Google Scholar

    [12]

    Zeng X, Wang W, Chen C, Yen G G 2020 IEEE Trans. Cybern. 50 2502Google Scholar

    [13]

    Palla G, Derenyi I, Farkas I, Vicsek T 2005 Nature 435 814Google Scholar

    [14]

    Li J, Wang X, Cui Y 2014 Physica A 415 398Google Scholar

    [15]

    李慧嘉, 李慧颖, 李爱华 2015 计算机学报 38 301Google Scholar

    Li H J, Li H Y, Li A H 2015 Chin. J. Comput. 38 301Google Scholar

    [16]

    Hofman J M, Wiggins C H 2008 Phys. Rev. Lett. 100 258701Google Scholar

    [17]

    Boccaletti S, Ivanchenko M, LatoraV, Pluchino A 2007 Phys. Rev. E 75 045102Google Scholar

    [18]

    Xu Y, Wu X, Li N, Liu L, Xie C, Li C 2019 IEEE Trans. Circuits Syst. Express Brief 67 700Google Scholar

    [19]

    Han M, Zhang M, Qiu T, Xu M 2019 IEEE Trans. Neural Networks Learn. Syst. 30 255Google Scholar

    [20]

    Hong H, Kim B J, Choi M Y, Park H 2004 Phys. Rev. E 69 067105Google Scholar

    [21]

    Chavez M, Hwang D U, Amann A, Hentschel H E, Boccaletti S 2005 Phys. Rev. Lett. 94 218701Google Scholar

    [22]

    Wang X, Lai Y C, Lai C H 2007 Phys. Rev. E 75 056205Google Scholar

    [23]

    Jalili M, Rad A A, Hasler M 2008 Phys. Rev. E 78 016105Google Scholar

    [24]

    Rad A A, Jalili M, Hasler M 2008 Chaos 18 037104Google Scholar

    [25]

    Lu X, Kuzmin K, Chen M, Szymanski B K 2018 Inf. Sci. 424 55Google Scholar

    [26]

    Zhang Y, Wang M, Gottwalt F, Saberi M, Chang E 2019 J. Informetr. 13 616Google Scholar

    [27]

    De Meo P, Ferrara E, Fiumara G, Provetti A 2013 J. Informetr. 222 648Google Scholar

    [28]

    Yang R, Wang W X, Lai Y C, Chen G 2009 Phys. Rev. E 79 026112Google Scholar

    [29]

    Li H J, Daniels J J 2015 Phys. Rev. E 91 012801Google Scholar

    [30]

    Meyniel F, Dehaene S 2017 PNAS 114 3859Google Scholar

    [31]

    Khadivi A, Ajdari R A, Hasler M 2011 Phys. Rev. E 83 046104Google Scholar

    [32]

    Fortunato S, Barthelemy M 2007 PNAS 104 36Google Scholar

    [33]

    Good B H, de Montjoye Y A, Clauset A 2010 Phys. Rev. E 81 046106Google Scholar

    [34]

    Newman M E J 2002 Comput. Phys. Commun. 147 40Google Scholar

    [35]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U 2006 Phys. Rep. 424 175Google Scholar

    [36]

    LuL Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016 Phys. Rep. 650 1Google Scholar

    [37]

    Carmi S, Havlin S, Kirkpatrick S, Shavitt Y, Shir E 2007 PNAS 104 11150Google Scholar

    [38]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888Google Scholar

    [39]

    Motter A E, Zhou C, Kurths J 2005 Phys. Rev. E 71 016116Google Scholar

    [40]

    Motter A E, Zhou C, Kurths J 2005 EPL 69 334Google Scholar

    [41]

    Nishikawa T, Motter A E 2006 Phys. Rev. E 73 065106Google Scholar

    [42]

    Gerschgorin S 1931 Izv. Akad. Nauk USSR Otd. Fiz.-Mat. Nauk 7 749

    [43]

    Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D 2004 PNAS 101 2658Google Scholar

    [44]

    李慧嘉, 严冠, 刘志东, 李桂君, 章祥荪 2017 中国科学: 数学 4 7241Google Scholar

    Li H J, Yan G, Liu Z D, Li G J, Zhang X S 2017 Sci. Sin. Math 4 7241Google Scholar

    [45]

    Li H J, Wang Y, Wu L Y, Zhang J, Zhang X S 2012 Phys. Rev. E 86 016109Google Scholar

    [46]

    Li H J, Zhang X S 2013 EPL 103 58002Google Scholar

    [47]

    Lancichinetti A, Fortunato S, Radicchi F 2008 Phys. Rev. E 78 046110Google Scholar

    [48]

    Guimera R, Nunes Amaral L A 2005 Nature 433 895Google Scholar

    [49]

    Duch J, Arenas A 2005 Phys. Rev. E 72 027104Google Scholar

    [50]

    Zachary W W 1977 J. Anthropol. Res. 33 452Google Scholar

    [51]

    Knuth D E 1994 The Stanford Graph Base: A Platform for Combinatorial Computing (New York: ACM Press) p592

    [52]

    Lusseau D, Schneider K, Boisseau O J, Haase P, Slooten E, Dawson S M 2003 Behav. Ecol. Sociobiol. 54 396Google Scholar

    [53]

    Guimera R, Danon L, Diaz-Guilera A, Giralt F, Arenas A 2003 Phys. Rev. E 68 065103Google Scholar

    [54]

    Gleiser P, Danon L 2003 Adv. Complex Syst. 6 565Google Scholar

    [55]

    Boguna M, Pastor-Satorras R, Diaz-Guilera A, Arenas A 2004 Phys. Rev. E 70 056122Google Scholar

    [56]

    Agarwal G, Kempe D 2008 Eur. Phys. J. B 66 409Google Scholar

    [57]

    Xing N, Zong Q, Dou L, Tian B, Wang Q 2019 IEEE Trans. Veh. Technol. 68 9963Google Scholar

    [58]

    Yang H, Yao Q, Yu A, Lee Y, Zhang J 2019 IEEE Trans. Commun. 67 3457Google Scholar

  • 图 1  (a)节点4和节点5之间边对应的通讯邻域图; (b)网络中的桥边

    Fig. 1.  (a) Communication neighborhood graph corresponding to the edge between node 4 and node 5; (b) bridge side in the network.

    图 2  参数α取不同值时BA模型中节点强度s和节点度k之间的关系(N = 5000) (a) $ \alpha =2 $; (b) $ \alpha =6 $

    Fig. 2.  Relationship between node strength s and node degree k in BA model (N = 5000) with different values of parameter α: (a) $ \alpha =2 $; (b) $ \alpha =6 $.

    图 3  应用加权机制后网络的动态演化示例图

    Fig. 3.  Example of dynamic evolution of network after applying weighting mechanism.

    图 4  (a) 无标度网络中$ {\lambda }_{N}/{\lambda }_{2} $与($ \alpha $, $ \left\langle k \right\rangle $)的对应关系(N = 500, $ \beta =0 $); (b)无标度网络中$ {\lambda }_{N}/{\lambda }_{2} $与($ \alpha $, $ \beta $)的对应关系(N = 500, $ \left\langle k \right\rangle =4 $)

    Fig. 4.  (a) Corresponding relationship (N = 500, $ \beta =0 $) in scale-free networks between $ {\lambda }_{N}/{\lambda }_{2} $ and ($ \alpha $, $ \left\langle k \right\rangle $); (b) Corresponding relationship (N = 500, $ \left\langle k \right\rangle =4 $) in scale-free networks between $ {\lambda }_{N}/{\lambda }_{2} $ and ($ \alpha $, $ \beta $).

    图 5  (a) Watts-Strogatz网络中$ {\lambda }_{N}/{\lambda }_{2} $与($ \alpha $, $ \left\langle k \right\rangle $)的对应关系(N = 500, P = 0.1); (b) Watts-Strogatz网络中$ {\lambda }_{N}/{\lambda }_{2} $与($ \alpha $, P)的对应关系(N = 500, $ \left\langle k \right\rangle =4 $)

    Fig. 5.  (a) Corresponding relationship (N = 500, P = 0.1) in Watts-Strogatz networks between $ {\lambda }_{N}/{\lambda }_{2} $ and ($ \alpha $, $ \left\langle k \right\rangle $); (b) corresponding relationship (N = 500, $ \left\langle k \right\rangle =4 $) in Watts-Strogatz networks between $ {\lambda }_{N}/{\lambda }_{2} $ and ($ \alpha $, P).

    图 6  (a) GN基准网络中使用加权机制(逆加权机制)前后平均比率R的对比; (b) LFR基准网络中使用加权机制(逆加权机制)前后平均比率R的对比

    Fig. 6.  (a) Comparison of average ratio R before and after using weighting mechanism (inverse weighting mechanism) in GN benchmark network; (b) comparison of average ratio R before and after using weighting mechanism (inverse weighting mechanism) in LFR benchmark network.

    图 7  在LFR网络中运用加权机制(逆加权机制), 当取不同的$ \alpha $值时, 利用(a) SA算法和(b) DA算法后NMI的计算值

    Fig. 7.  Weighted mechanism (inverse weighted mechanism) is used in LFR network. When the $ \alpha $ value is different, the NMI value is calculated by using (a) SA algorithm and (b) DA algorithm.

    图 8  在LFR网络中运用加权机制(逆加权机制), 当$ \alpha =4 $($ \alpha =-4 $)并考虑聚类规模时, 利用(a) SA算法和(b) DA算法后NMI的计算值

    Fig. 8.  The weighted mechanism (inverse weighted mechanism) is used in LFR network. When α = 4 (α = –4) and considering the cluster size, the NMI calculated by (a) SA algorithm and (b) DA algorithm.

    表 1  在现实世界网络中使用8种不同加权策略的实验结果对比, 其中RW代表随机游走方法, SA代表模拟退火方法, VB代表变分贝叶斯方法, PL代表概率推断方法

    Table 1.  Comparison of experimental results using eight different weighting strategies in real world networks, in which RW represents random walk method, SA stands for simulated annealing method, VB stands for variational Bayesian method, PL stands for probability inference method.

    现实世界网络 N $ \left\langle k \right\rangle $ $ {\lambda }_{N}/{\lambda }_{2} $
    Chavez Wang Jalili Khadivi RW SA VB PL This work
    蛋白质结构网络2 53 4.64 20.92 20.54 6.06 5.83 5.61 4.87 4.43 4.59 4.27
    海豚网络 62 5.12 16.89 43.01 6.83 6.22 6.04 5.33 5.07 5.30 4.95
    蛋白质结构网络1 95 4.48 63.1 262.2 23.5 19.82 15.71 13.65 10.59 11.88 8.45
    蛋白质结构网络3 99 4.37 43.75 299.85 13.07 10.84 10.27 9.87 9.14 9.00 8.02
    中国航空网络 203 18.48 13.25 5.79 3.29 2.88 2.23 2.08 1.83 1.76 1.55
    电子邮件通讯 1133 9.62 8.63 5.81 5.40 4.04 3.86 3.91 3.84 3.54 3.77
    酵母蛋白质交互作用 1458 2.67 52.44 269.07 25.60 17.63 15.61 13.21 10.76 12.66 9.52
    蛋白质交互作用 2840 2.92 34.87 41.60 16.50 13.85 11.48 10.47 8.94 9.87 5.50
    中国电力网络 865 5.20 49.77 133.8 25.43 20.90 23.44 15.19 12.04 10.56 5.04
    科学家合作网络 4380 3.25 68.31 273.14 38.69 25.87 20.02 17.36 10.42 11.77 7.21
    因特网AS2 7690 4.00 12.90 3.26 2.94 2.15 2.04 2.10 1.91 1.59 1.88
    因特网AS5 8063 4.10 12.88 3.41 3.37 2.56 2.27 2.09 1.97 2.20 1.83
    下载: 导出CSV

    表 2  在不同现实网络使用加权策略得到的实验结果, 其中“/”左右表示加权后和加权前的模块度Q

    Table 2.  Experimental results are obtained by using weighting strategy in different real networks, where /’s left or right represents the modularity Q value after or before weighting.

    网络 文献 最优Q SA[48] DA[49] CNM[10]
    中国航空网络 [11] 0.644/0.525 0.589/0.428 0.577/0.483
    空手道俱乐部 [50] 0.420 0.416/0.342 0.411/0.351 0.413/0.376
    《悲惨世界》 [51] 0.561 0.554/0.389 0.539/0.406 0.531/0.395
    海豚社会网络 [52] 0.531 0.527/0.375 0.521/0.362 0.517/0.356
    电子邮件 [53] 0.579 0.568/0.462 0.543/0.436 0.538/0.444
    爵士乐 [54] 0.446 0.439/0.333 0.437/0.341 0.431/0.328
    PGP密钥签名 [55] 0.878 0.883/0.674 0.843/0.705 0.872/0.754
    下载: 导出CSV

    表 3  在现实世界网络中使用不同加权策略的实验结果对比, 这里网络聚类算法利用CNM算法, 其中RW代表随机游走方法, SA代表模拟退火方法, VB代表变分贝叶斯方法, PL代表概率推断方法

    Table 3.  Comparison of experimental results using different weighting strategies in the real world network. CNM algorithm is used as the network clustering algorithm, in which RW represents the random walk method, SA represents the simulated annealing method, VB represents the variable dB method, and PL represents the probability inference method.

    网络 Chavez Wang Jalili Khadivi RW SA VB PL This work
    空手道俱乐部 0.316 0.322 0.351 0.362 0.374 0.381 0.390 0.386 0.413
    中国航空网络 0.449 0.478 0.423 0.432 0.506 0.543 0.564 0.578 0.603
    《悲惨世界》 0.357 0.369 0.399 0.411 0.439 0.457 0.488 0.433 0.531
    爵士乐 0.338 0.347 0.353 0.361 0.383 0.399 0.42 0.387 0.431
    PGP密钥签名 0.583 0.678 0.676 0.715 0.744 0.786 0.839 0.820 0.872
    海豚社会网络 0.357 0.381 0.371 0.374 0.406 0.444 0.483 0.500 0.517
    电子邮件 0.368 0.409 0.431 0.443 0.471 0.499 0.503 0.495 0.538
    下载: 导出CSV
  • [1]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [2]

    Barabasi A L, Albert R 1999 Science 286 509Google Scholar

    [3]

    Han Y, Zhu L, Cheng Z, Li J, Liu X 2020 IEEE Trans. Cybern. 50 1697Google Scholar

    [4]

    杨博, 刘大有, 刘继明, 金弟, 马海宾 2009 软件学报 20 54Google Scholar

    Yang B, Liu D Y, Liu J M, Jin D, Ma H B 2009 J. Software 20 54Google Scholar

    [5]

    Ding S, Yue Z, Yang S, Niu F, Zhang Y 2020 IEEE Trans. Ind. Inf. 32 2101Google Scholar

    [6]

    Liang W, Li K, Long J, Kui X, Zomaya A Y 2020 IEEE Trans. Ind. Inf. 16 2063Google Scholar

    [7]

    Lu M, Zhang Z, Qu Z, Kang Y 2019 IEEE Trans. Knowl. Data Eng. 31 1736Google Scholar

    [8]

    Ma X, Dong D, Wang Q 2019 IEEE Trans. Knowl. Data Eng. 31 273Google Scholar

    [9]

    Newman M E J, Girvan M 2004 Phys. Rev. E 69 026113Google Scholar

    [10]

    Clauset A, Newman M E J 2004 Phys. Rev. E 70 066111Google Scholar

    [11]

    Du W B, Zhou X L, Lordan O, Wang Z, Zhao C, Zhu Y B 2016 Transp. Res. Pt. E-Logist. Transp. Rev. 89 108Google Scholar

    [12]

    Zeng X, Wang W, Chen C, Yen G G 2020 IEEE Trans. Cybern. 50 2502Google Scholar

    [13]

    Palla G, Derenyi I, Farkas I, Vicsek T 2005 Nature 435 814Google Scholar

    [14]

    Li J, Wang X, Cui Y 2014 Physica A 415 398Google Scholar

    [15]

    李慧嘉, 李慧颖, 李爱华 2015 计算机学报 38 301Google Scholar

    Li H J, Li H Y, Li A H 2015 Chin. J. Comput. 38 301Google Scholar

    [16]

    Hofman J M, Wiggins C H 2008 Phys. Rev. Lett. 100 258701Google Scholar

    [17]

    Boccaletti S, Ivanchenko M, LatoraV, Pluchino A 2007 Phys. Rev. E 75 045102Google Scholar

    [18]

    Xu Y, Wu X, Li N, Liu L, Xie C, Li C 2019 IEEE Trans. Circuits Syst. Express Brief 67 700Google Scholar

    [19]

    Han M, Zhang M, Qiu T, Xu M 2019 IEEE Trans. Neural Networks Learn. Syst. 30 255Google Scholar

    [20]

    Hong H, Kim B J, Choi M Y, Park H 2004 Phys. Rev. E 69 067105Google Scholar

    [21]

    Chavez M, Hwang D U, Amann A, Hentschel H E, Boccaletti S 2005 Phys. Rev. Lett. 94 218701Google Scholar

    [22]

    Wang X, Lai Y C, Lai C H 2007 Phys. Rev. E 75 056205Google Scholar

    [23]

    Jalili M, Rad A A, Hasler M 2008 Phys. Rev. E 78 016105Google Scholar

    [24]

    Rad A A, Jalili M, Hasler M 2008 Chaos 18 037104Google Scholar

    [25]

    Lu X, Kuzmin K, Chen M, Szymanski B K 2018 Inf. Sci. 424 55Google Scholar

    [26]

    Zhang Y, Wang M, Gottwalt F, Saberi M, Chang E 2019 J. Informetr. 13 616Google Scholar

    [27]

    De Meo P, Ferrara E, Fiumara G, Provetti A 2013 J. Informetr. 222 648Google Scholar

    [28]

    Yang R, Wang W X, Lai Y C, Chen G 2009 Phys. Rev. E 79 026112Google Scholar

    [29]

    Li H J, Daniels J J 2015 Phys. Rev. E 91 012801Google Scholar

    [30]

    Meyniel F, Dehaene S 2017 PNAS 114 3859Google Scholar

    [31]

    Khadivi A, Ajdari R A, Hasler M 2011 Phys. Rev. E 83 046104Google Scholar

    [32]

    Fortunato S, Barthelemy M 2007 PNAS 104 36Google Scholar

    [33]

    Good B H, de Montjoye Y A, Clauset A 2010 Phys. Rev. E 81 046106Google Scholar

    [34]

    Newman M E J 2002 Comput. Phys. Commun. 147 40Google Scholar

    [35]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U 2006 Phys. Rep. 424 175Google Scholar

    [36]

    LuL Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016 Phys. Rep. 650 1Google Scholar

    [37]

    Carmi S, Havlin S, Kirkpatrick S, Shavitt Y, Shir E 2007 PNAS 104 11150Google Scholar

    [38]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888Google Scholar

    [39]

    Motter A E, Zhou C, Kurths J 2005 Phys. Rev. E 71 016116Google Scholar

    [40]

    Motter A E, Zhou C, Kurths J 2005 EPL 69 334Google Scholar

    [41]

    Nishikawa T, Motter A E 2006 Phys. Rev. E 73 065106Google Scholar

    [42]

    Gerschgorin S 1931 Izv. Akad. Nauk USSR Otd. Fiz.-Mat. Nauk 7 749

    [43]

    Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D 2004 PNAS 101 2658Google Scholar

    [44]

    李慧嘉, 严冠, 刘志东, 李桂君, 章祥荪 2017 中国科学: 数学 4 7241Google Scholar

    Li H J, Yan G, Liu Z D, Li G J, Zhang X S 2017 Sci. Sin. Math 4 7241Google Scholar

    [45]

    Li H J, Wang Y, Wu L Y, Zhang J, Zhang X S 2012 Phys. Rev. E 86 016109Google Scholar

    [46]

    Li H J, Zhang X S 2013 EPL 103 58002Google Scholar

    [47]

    Lancichinetti A, Fortunato S, Radicchi F 2008 Phys. Rev. E 78 046110Google Scholar

    [48]

    Guimera R, Nunes Amaral L A 2005 Nature 433 895Google Scholar

    [49]

    Duch J, Arenas A 2005 Phys. Rev. E 72 027104Google Scholar

    [50]

    Zachary W W 1977 J. Anthropol. Res. 33 452Google Scholar

    [51]

    Knuth D E 1994 The Stanford Graph Base: A Platform for Combinatorial Computing (New York: ACM Press) p592

    [52]

    Lusseau D, Schneider K, Boisseau O J, Haase P, Slooten E, Dawson S M 2003 Behav. Ecol. Sociobiol. 54 396Google Scholar

    [53]

    Guimera R, Danon L, Diaz-Guilera A, Giralt F, Arenas A 2003 Phys. Rev. E 68 065103Google Scholar

    [54]

    Gleiser P, Danon L 2003 Adv. Complex Syst. 6 565Google Scholar

    [55]

    Boguna M, Pastor-Satorras R, Diaz-Guilera A, Arenas A 2004 Phys. Rev. E 70 056122Google Scholar

    [56]

    Agarwal G, Kempe D 2008 Eur. Phys. J. B 66 409Google Scholar

    [57]

    Xing N, Zong Q, Dou L, Tian B, Wang Q 2019 IEEE Trans. Veh. Technol. 68 9963Google Scholar

    [58]

    Yang H, Yao Q, Yu A, Lee Y, Zhang J 2019 IEEE Trans. Commun. 67 3457Google Scholar

  • [1] 马金龙, 张俊峰, 张冬雯, 张红斌. 基于通信序列熵的复杂网络传输容量. 物理学报, 2021, 70(7): 078902. doi: 10.7498/aps.70.20201300
    [2] 陈单, 石丹丹, 潘贵军. 复杂网络电输运性能与通信序列熵之间的关联. 物理学报, 2019, 68(11): 118901. doi: 10.7498/aps.68.20190230
    [3] 孔江涛, 黄健, 龚建兴, 李尔玉. 基于复杂网络动力学模型的无向加权网络节点重要性评估. 物理学报, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [4] 韩忠明, 吴杨, 谭旭升, 段大高, 杨伟杰. 面向结构洞的复杂网络关键节点排序. 物理学报, 2015, 64(5): 058902. doi: 10.7498/aps.64.058902
    [5] 苏晓萍, 宋玉蓉. 利用邻域“结构洞”寻找社会网络中最具影响力节点. 物理学报, 2015, 64(2): 020101. doi: 10.7498/aps.64.020101
    [6] 袁铭. 带有层级结构的复杂网络级联失效模型. 物理学报, 2014, 63(22): 220501. doi: 10.7498/aps.63.220501
    [7] 刘伟彦, 刘斌. 基于局部路由策略的复杂网络拥塞控制. 物理学报, 2014, 63(24): 248901. doi: 10.7498/aps.63.248901
    [8] 刘金良. 具有随机节点结构的复杂网络同步研究. 物理学报, 2013, 62(4): 040503. doi: 10.7498/aps.62.040503
    [9] 杨浦, 郑志刚. 基于动力学同步的复杂网络结构识别速度研究. 物理学报, 2012, 61(12): 120508. doi: 10.7498/aps.61.120508
    [10] 张聪, 沈惠璋, 李峰, 杨何群. 复杂网络中社团结构发现的多分辨率密度模块度. 物理学报, 2012, 61(14): 148902. doi: 10.7498/aps.61.148902
    [11] 柳爽, 吕翎, 李钢. 一类不确定复杂网络的滑模追踪同步. 物理学报, 2012, 61(16): 160507. doi: 10.7498/aps.61.160507
    [12] 刘刚, 李永树. 基于引力场理论的复杂网络路由选择策略研究. 物理学报, 2012, 61(24): 248901. doi: 10.7498/aps.61.248901
    [13] 吕翎, 柳爽, 张新, 朱佳博, 沈娜, 商锦玉. 节点结构互异的复杂网络的时空混沌反同步. 物理学报, 2012, 61(9): 090504. doi: 10.7498/aps.61.090504
    [14] 吕天阳, 谢文艳, 郑纬民, 朴秀峰. 加权复杂网络社团的评价指标及其发现算法分析. 物理学报, 2012, 61(21): 210511. doi: 10.7498/aps.61.210511
    [15] 崔爱香, 傅彦, 尚明生, 陈端兵, 周涛. 复杂网络局部结构的涌现:共同邻居驱动网络演化. 物理学报, 2011, 60(3): 038901. doi: 10.7498/aps.60.038901
    [16] 吕翎, 张超. 一类节点结构互异的复杂网络的混沌同步. 物理学报, 2009, 58(3): 1462-1466. doi: 10.7498/aps.58.1462
    [17] 李涛, 裴文江, 王少平. 无标度复杂网络负载传输优化策略. 物理学报, 2009, 58(9): 5903-5910. doi: 10.7498/aps.58.5903
    [18] 陈华良, 刘忠信, 陈增强, 袁著祉. 复杂网络的一种加权路由策略研究. 物理学报, 2009, 58(9): 6068-6073. doi: 10.7498/aps.58.6068
    [19] 高忠科, 金宁德. 两相流流型复杂网络社团结构及其统计特性. 物理学报, 2008, 57(11): 6909-6920. doi: 10.7498/aps.57.6909
    [20] 林 海, 吴晨旭. 基于遗传算法的重复囚徒困境博弈策略在复杂网络中的演化. 物理学报, 2007, 56(8): 4313-4318. doi: 10.7498/aps.56.4313
计量
  • 文章访问数:  4319
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-09
  • 修回日期:  2021-04-02
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回