搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的微纳光纤自动制备系统

刘鸿江 刘逸飞 谷付星

引用本文:
Citation:

基于深度学习的微纳光纤自动制备系统

刘鸿江, 刘逸飞, 谷付星

Automatic fabrication system of optical micro-/nanofiber based on deep learning*

Liu Hong-Jiang, Liu Yi-Fei, Gu Fu-Xing
PDF
导出引用
  • 在微纳光纤拉锥制备过程中,对直径的大范围、高精度和动态实时性测量是实现低损耗传输和色散调控的关键.针对现有传统制备方法直径调控范围小、操作复杂及耗时长等问题,本文首次基于深度学习神经网络算法实现了微纳光纤自动检测系统.本文利用计算机视觉中的图像分割方法,通过制作高质量多尺度微纳光纤数据集,使用基于小目标检测改进的YOLOv8−FD (You Only Look Once version 8-Fiber Detection)算法对微纳光纤直径进行自动检测.在数据集中获得了平均均值精度高达mAPIoU=50=0.995和mAPIoU=50-95=0.765的性能参数.实验结果表明,该系统可实现微纳光纤直径462 nm−125 μm范围,误差2.95%以内的测量和自动化制备,并随着光纤直径增长,误差逐渐缩小,且该系统光学成像单个像素分辨率为65.97 nm,平均检测时间为9.6 ms.本文工作适用于对微纳光纤的高精度实时测量和自动精确制备,为低损耗传输和色散可调的微纳光纤器件发展提供新的思路.
    The wide range, high precision, and dynamic real-time measurement of diameter are crucial for achieving low loss transmission and controlling dispersion in the preparation process of micro-/nanofiber. In view of the problems of small diameter regulation range, complex operation and long-time consumption of the existing preparation methods, this paper firstly realizes the automatic detection system of micro-/nanofiber based on deep learning neural network algorithm. In this paper, the image segmentation method in computer vision is used to make high-quality multi-scale micro-/nanofiber datasets, and the improved YOLOv8-FD(You Only Look Once version 8-Fiber Detection) algorithm based on small target detection is used to automatically detect the diameter of micro-/nanofiber.

    Through image segmentation and identification of the target of single pixel size in the microscopic image, the diameter detection of micro-/nanofiber is finally realized. In this process, the real-time diameter of micro-/nanofiber is obtained through image information, and then the micro-/nanofiber small target is accurately segmented to achieve the precise detection of mAPIoU=50=0.995 and mAPIoU=50:95=0.765 on the micro-/nanofiber multi-scale target dataset with extremely high accuracy. The algorithm-based construction of a high-precision micro-/nanofiber automatic preparation system enables real-time accurate segmentation of fiber edges, calculation of fiber diameter, and feedback to the control system for achieving automated preparation of fibers with arbitrary diameters. Additionally, it facilitates detection of micro-/nanofiber within the range of 462 nm to 125 μm. The average response time for reasoning is 9.6 ms, while maintaining a detection error below 2.95%.

    In addition, compared with other micro-/nanofiber diameter detection methods based on optical imaging and mode cutoff, this method shows advantages of high precision, high speed and arbitrary diameter preparation for diameter detection based on deep learning neural networks. The system is well-suited for high-precision real-time measurement and automated, precise preparation of micro-/nanofiber, thereby offering a novel approach for the development of low-loss transmission and adjustable dispersion micro-/nanofiber devices.

  • [1]

    Tong L M 2022Acta Opt. Sin. 42 17(in Chinese)[童利民2022光学学报42 17]

    [2]

    Zhang L, Pan J, Zhang Z 2020Opto-Electron Adv. 3 190022

    [3]

    Yan Z Y, Wang J J, Wang C Y, Yu R W, Shi L, Xiao L M 2012Opt. Express 30 18044

    [4]

    Cen Q Q, Pian S J, Liu X H, Tang Y W, He X Y, Ma Y G 2023eLight 3 9

    [5]

    Li Y H, Wang L Z, Li L J, Tong L M 2019Appl. Phys. B 125192

    [6]

    Lu J S, Li Q, Qiu C W, Hong Y, Ghosh P, Qiu M 2019Sci. Adv. 58271

    [7]

    Tkachenko G, Toftul I, Esporlas C, Maimaiti A, Kien F L, Truong V G, Chormaic S N 2020Optica 759

    [8]

    Linghu S Y, Gu Z Q, Lu J S, Fang W, Yang Z Y, Yu H K, Li Z Y, Zhu R L, Peng J, Zhan Q W, Zhuang S L, Gu M, Gu F X 2021Nat. Commun. 12, 385

    [9]

    Hao Z, Jiang B Q, Ma Y X, Yi R X, Gan X T, Zhao J L 2023Opto-Electron Adv. 6 230012

    [10]

    Zhang J B, Kang Y, Guo X, Li Y H, Liu K Y, Xie Y, Wu H, Cai D W, Gong J, Shi Z X, Jin Y Y, Wang P, Fang W, Zhang L, Tong L M 2023Light:Sci. Appl. 12 89

    [11]

    Chen J H, Xiong Y F, Xu F, Lu Y Q 2021Light:Sci. Appl. 10 78

    [12]

    Zhou J, Li Y, Ma Y, Yang Q, Liu Q 2021Opt. Lett. 46 1570

    [13]

    Linghu S Y, Ma Y N, Gu Z Q, Zhu R L, Liu Y F, Liu H J, Gu F X 2022Opt. Express 30 22755

    [14]

    Liao F, Yu J X, Gu Z Q, Yang Z Y, Hasan T, Linghu S Y, Pang J, Fang W, Zhuang S L, Gu M, Gu F X 2019Sci. Adv. 57398

    [15]

    Kang Y, Liu K Y, Xie Y, Gong Y, Yao N, Fang W, Guo X, Zhang L, Wang P, Tong L M 2020Sci. Sin. Phys. Mech.& As. 50 084212(in Chinese)[康仪,刘可盈,谢宇,龚珏,姚妮,方伟,郭欣,张磊,王攀,童利民2020中国科学:物理学,力学,天文学50 084212]

    [16]

    Ni Y, Linghu S L, Xu Y X, Zhu R L, Zhou N, Gu F X, Zhang L, Fang W, Ding W, Tong L M 2020IEEE Photon. Technol. Lett. 32 1069

    [17]

    Warken F, Giessen H 2004Opt. Lett. 291727

    [18]

    Little D J, Kane D M 2014Opt. Lett. 395196

    [19]

    Yu Y, Zhang X, Song Z 2014Appl. Opt. 53 8222

    [20]

    Xu Y, Fang W, Tong L 2017Opt. Express 25 10434

    [21]

    Kang Y, Gong J, Xu Y 2020IEEE Photon. Technol. Lett.2020, 32 219

    [22]

    Azzoune A, Delaye P, Pauliat G 2019Opt. Express 27 24403

    [23]

    Li H, Ma Y N, Gu F X 2022Opt. Instruments 44 1005(in Chinese)[李华,麻艳娜,谷付星2022光学仪器44 1005]

    [24]

    Woo S, Park J, Lee J Y 2017ECCV 319

    [25]

    Ying D W, Zhang S H, Deng S J, Wu H B 2023Acta Phys. Sin.72 14 in Chinese)[应大卫,张思慧,邓书金,武海斌2023物理学报72 14]

    [26]

    Nan H, Ma X J, Zhao H B, Tang S J, Liu W H, Wang D W, Jia C L 2021Acta Phys. Sin. 70 7(in Chinese)[南虎,麻晓晶,赵海博,汤少杰,刘卫华,王大威,贾春林2021物理学报70 7]

    [27]

    He K M, Gkioxari G, Dollar P, Girshick R 2017ICCV 17 2980

    [28]

    Gu Z, Zhu R L, Shen T C, Dou L, Liu H J, Liu Y F, Liu X, Liu J, Zhuang S L, Gu F X 2023Nat. Commun. 14 7663

  • [1] 吴婉玲, 王向珂, 虞华康, 李志远. 基于微纳光纤双模式干涉的亚波长聚焦光场及光捕获应用. 物理学报, doi: 10.7498/aps.73.20240181
    [2] 欧秀娟, 肖奕. RNA扭转角预测的深度学习方法. 物理学报, doi: 10.7498/aps.72.20231069
    [3] 孙涛, 袁健美. 基于深度学习原子特征表示方法的Janus过渡金属硫化物带隙预测. 物理学报, doi: 10.7498/aps.72.20221374
    [4] 战庆亮, 葛耀君, 白春锦. 基于深度学习的流场时程特征提取模型. 物理学报, doi: 10.7498/aps.71.20211373
    [5] 张航瑛, 王雪琦, 王华英, 曹良才. 基于明度分量的Retinex-Net图像增强改进方法. 物理学报, doi: 10.7498/aps.71.20220099
    [6] 徐昭, 周昕, 白星, 李聪, 陈洁, 倪洋. 基于深度学习的相位截断傅里叶变换非对称加密系统攻击方法. 物理学报, doi: 10.7498/aps.70.20202075
    [7] 王甜甜, 王慧, 朱艳春, 王丽嘉. 基于位移流U-Net和变分自动编码器的心脏电影磁共振图像左心肌运动追踪. 物理学报, doi: 10.7498/aps.70.20210885
    [8] 南虎, 麻晓晶, 赵海博, 汤少杰, 刘卫华, 王大威, 贾春林. 基于YOLOv3框架的高分辨电镜图像原子峰位置检测. 物理学报, doi: 10.7498/aps.70.20201502
    [9] 苏博, 陶芬, 李可, 杜国浩, 张玲, 李中亮, 邓彪, 谢红兰, 肖体乔. 同步辐射纳米CT图像配准方法研究. 物理学报, doi: 10.7498/aps.70.20210156
    [10] 张瑶, 张云波, 陈立. 基于深度学习的光学表面杂质检测. 物理学报, doi: 10.7498/aps.70.20210403
    [11] 赵智鹏, 周双, 王兴元. 基于深度学习的新混沌信号及其在图像加密中的应用. 物理学报, doi: 10.7498/aps.70.20210561
    [12] 郎利影, 陆佳磊, 于娜娜, 席思星, 王雪光, 张雷, 焦小雪. 基于深度学习的联合变换相关器光学图像加密系统去噪方法. 物理学报, doi: 10.7498/aps.69.20200805
    [13] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法. 物理学报, doi: 10.7498/aps.69.20201019
    [14] 李杰, 李蒙蒙, 孙立朋, 范鹏程, 冉洋, 金龙, 关柏鸥. 保偏微纳光纤倏逝场传感器. 物理学报, doi: 10.7498/aps.66.074209
    [15] 吴涛, 金义富, 侯睿, 杨俊杰. 不确定性边缘表示与提取的认知物理学方法. 物理学报, doi: 10.7498/aps.62.064201
    [16] 刘颖刚, 车伏龙, 贾振安, 傅海威, 王宏亮, 邵敏. 微纳光纤布拉格光栅折射率传感特性研究. 物理学报, doi: 10.7498/aps.62.104218
    [17] 宋长新, 马克, 秦川, 肖鹏. 结合稀疏编码和空间约束的红外图像聚类分割研究. 物理学报, doi: 10.7498/aps.62.040702
    [18] 侯建平, 赵晨阳, 杨楠, 郝建苹, 赵建林. 微纳光纤端面反射特性的实验测量方法. 物理学报, doi: 10.7498/aps.62.144216
    [19] 梁瑞冰, 孙琪真, 沃江海, 刘德明. 微纳尺度光纤布拉格光栅折射率传感的理论研究. 物理学报, doi: 10.7498/aps.60.104221
    [20] 唐英干, 邸秋艳, 赵立兴, 关新平, 刘福才. 基于二维最小Tsallis交叉熵的图像阈值分割方法. 物理学报, doi: 10.7498/aps.58.9
计量
  • 文章访问数:  275
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 上网日期:  2024-03-27

/

返回文章
返回