搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的微纳光纤自动制备系统

刘鸿江 刘逸飞 谷付星

引用本文:
Citation:

基于深度学习的微纳光纤自动制备系统

刘鸿江, 刘逸飞, 谷付星

Automatic fabrication system of optical micro-nanofiber based on deep learning

Liu Hong-Jiang, Liu Yi-Fei, Gu Fu-Xing
PDF
HTML
导出引用
  • 在微纳光纤拉锥制备过程中, 对直径的大范围、高精度和动态实时性测量是实现低损耗传输和色散调控的关键. 针对现有传统制备方法直径调控范围小、操作复杂及耗时长等问题, 本文基于深度学习神经网络算法实现了微纳光纤自动检测系统. 利用计算机视觉中的图像分割方法, 通过制作高质量多尺度微纳光纤数据集, 使用基于小目标检测改进的YOLOv8−FD算法对微纳光纤直径进行自动检测. 在数据集中获得了平均均值精度高达mAPIoU=50 = 0.975和mAPIoU=50—95 = 0.765的性能参数. 实验结果表明, 该系统可实现微纳光纤直径462 nm—125 μm范围, 误差2.95%以内的测量和自动化制备, 并随着光纤直径增长, 误差逐渐缩小, 且该系统光学成像单个像素分辨率为65.97 nm, 平均检测时间为9.6 ms. 本文工作适用于对微纳光纤的高精度实时测量和自动精确制备, 为低损耗传输和色散可调的微纳光纤器件发展提供新的思路.
    The wide range, high precision, and dynamic real-time measurement of micro-/nanofiber diameter are crucial for achieving low loss transmission and controlling dispersion in the preparation process of micro-nanofiber. In view of the problems of small diameter regulation range, complex operation and long-time consumption of the existing preparation methods, the automatic detection system of micro-nanofiber is realized based on deep learning neural network algorithm in this work. The image segmentation method in computer vision is used to make high-quality multi-scale micro-/nanofiber datasets, and the improved YOLOv8-FD (You Only Look Once version 8-Fiber Detection) algorithm based on small target detection is used to automatically detect the diameter of micro-nanofiber.Through image segmentation and identification of the target of single pixel size in the microscopic image, the diameter detection of micro-nanofiber is finally realized. In this process, the real-time diameter of micro-nanofiber is obtained through image information, and then the micro-nanofiber small target is accurately segmented to achieve the precise detection of mAPIoU=50 = 0.975 and mAPIoU=50—95 = 0.765 on the micro-nanofiber multi-scale target dataset with extremely high accuracy. The algorithm-based construction of a high-precision micro-nanofiber automatic preparation system enables real-time accurate segmentation of fiber edges, calculation of fiber diameter, and feedback to the control system for achieving automated preparation of fibers with arbitrary diameters. Additionally, it facilitates the detection of micro-nanofiber in a range from 462 nm to 125 μm. The average response time for reasoning is 9.6 ms, and the detection error is kept below 2.95%.In addition, compared with other micro-/nanofiber diameter detection methods based on optical imaging and mode cutoff, this method shows advantages of high precision, high speed and arbitrary diameter preparation for diameter detection based on deep learning neural networks. The system is very suitable for high-precision real-time measurement and automatic and accurate preparation of micro-/nanofibers, thereby providing a novel method of developing micro-nanofiber devices with low-loss transmission and adjustable dispersion.
      通信作者: 谷付星, gufuxing@usst.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62122054, 62075131)和上海市教委“曙光计划”(批准号: 22SG44)资助的课题.
      Corresponding author: Gu Fu-Xing, gufuxing@usst.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62122054, 62075131) and the “Dawn” Program of Shanghai Education Commission, China (Grant No. 22SG44).
    [1]

    童利民 2022 光学学报 42 17Google Scholar

    Tong L M 2022 Acta Opt. Sin. 42 17Google Scholar

    [2]

    Zhang L, Pan J, Zhang Z, Wu H, Yao N, Cai D W, Xu Y X, Zhang J, Sun G F, Wang L Q, Geng W D, Jin W G, Fang W, Di D W, Tong L M 2020 Opto-Electron Adv. 3 190022Google Scholar

    [3]

    Yan Z Y, Wang J J, Wang C Y, Yu R W, Shi L, Xiao L M 2022 Opt. Express 30 18044Google Scholar

    [4]

    Cen Q Q, Pian S J, Liu X H, Tang Y W, He X Y, Ma Y G 2023 eLight 3 9Google Scholar

    [5]

    Li Y H, Wang L Z, Li L J, Tong L M 2019 Appl. Phys. B 125 192Google Scholar

    [6]

    Lu J S, Li Q, Qiu C W, Hong Y, Ghosh P, Qiu M 2019 Sci. Adv. 5 8271Google Scholar

    [7]

    Tkachenko G, Toftul I, Esporlas C, Maimaiti A, Kien F L, Truong V G, Chormaic S N 2020 Optica 7 59Google Scholar

    [8]

    Linghu S Y, Gu Z Q, Lu J S, Fang W, Yang Z Y, Yu H K, Li Z Y, Zhu R L, Peng J, Zhan Q W, Zhuang S L, Gu M, Gu F X 2021 Nat. Commun. 12 385Google Scholar

    [9]

    Hao Z, Jiang B Q, Ma Y X, Yi R X, Gan X T, Zhao J L 2023 Opto-Electron Adv. 6 230012Google Scholar

    [10]

    Zhang J B, Kang Y, Guo X, Li Y H, Liu K Y, Xie Y, Wu H, Cai D W, Gong J, Shi Z X, Jin Y Y, Wang P, Fang W, Zhang L, Tong L M 2023 Light Sci. Appl. 12 89Google Scholar

    [11]

    Chen J H, Xiong Y F, Xu F, Lu Y Q 2021 Light Sci. Appl. 10 78Google Scholar

    [12]

    Zhou J, Li Y, Ma Y, Yang Q, Liu Q 2021 Opt. Lett. 46 1570Google Scholar

    [13]

    Linghu S Y, Ma Y N, Gu Z Q, Zhu R L, Liu Y F, Liu H J, Gu F X 2022 Opt. Express 30 22755Google Scholar

    [14]

    Liao F, Yu J X, Gu Z Q, Yang Z Y, Hasan T, Linghu S Y, Pang J, Fang W, Zhuang S L, Gu M, Gu F X 2019 Sci. Adv. 5 7398Google Scholar

    [15]

    康仪, 刘可盈, 谢宇, 龚珏, 姚妮, 方伟, 郭欣, 张磊, 王攀, 童利民 2020 中国科学: 物理学 力学 天文学 50 084212Google Scholar

    Kang Y, Liu K Y, Xie Y, Gong Y, Yao N, Fang W, Guo X, Zhang L, Wang P, Tong L M 2020 Sci. Sin. Phys. Mech. As. 50 084212Google Scholar

    [16]

    Ni Y, Linghu S L, Xu Y X, Zhu R L, Zhou N, Gu F X, Zhang L, Fang W, Ding W, Tong L M 2020 IEEE Photon. Technol. Lett. 32 1069Google Scholar

    [17]

    Warken F, Giessen H 2004 Opt. Lett. 29 1727Google Scholar

    [18]

    Little D J, Kane D M 2014 Opt. Lett. 39 5196Google Scholar

    [19]

    Yu Y, Zhang X L, Song Z Q, Wang J F, Meng Z 2014 Appl. Opt. 53 8222Google Scholar

    [20]

    Xu Y X, Fang W, Tong L M 2017 Opt. Express 25 10434Google Scholar

    [21]

    Kang Y, Gong J, Xu Y X, Yao N, Fang W, Guo X, Tong L M 2020 IEEE Photon. Technol. Lett. 32 219Google Scholar

    [22]

    Azzoune A, Delaye P, Pauliat G 2019 Opt. Express 27 24403Google Scholar

    [23]

    李华, 麻艳娜, 谷付星 2022 光学仪器 44 1005Google Scholar

    Li H, Ma Y N, Gu F X 2022 Opt. Instruments 44 1005Google Scholar

    [24]

    Woo S, Park J, Lee J Y 2017 ECCV 3 19Google Scholar

    [25]

    应大卫, 张思慧, 邓书金, 武海斌 2023 物理学报 72 144201Google Scholar

    Ying D W, Zhang S H, Deng S J, Wu H B 2023 Acta Phys. Sin. 72 144201Google Scholar

    [26]

    南虎, 麻晓晶, 赵海博, 汤少杰, 刘卫华, 王大威, 贾春林 2021 物理学报 70 076803Google Scholar

    Nan H, Ma X J, Zhao H B, Tang S J, Liu W H, Wang D W, Jia C L 2021 Acta Phys. Sin. 70 076803Google Scholar

    [27]

    He K M, Gkioxari G, Dollar P, Girshick R 2017 ICCV 17 2980Google Scholar

    [28]

    Gu Z, Zhu R L, Shen T C, Dou L, Liu H J, Liu Y F, Liu X, Liu J, Zhuang S L, Gu F X 2023 Nat. Commun. 14 7663Google Scholar

  • 图 1  基于深度学习的微纳光纤直径检测 (a)—(c)小、中、大目标尺度微纳光纤; (d) YOLOv8-FD网络结构

    Fig. 1.  Micro-nanofiber diameter detection based on deep learning: (a)–(c) Micro-nanofiber at small, medium and large target scales; (d) network structure of YOLOv8-FD.

    图 2  基于深度学习的微纳光纤自动制备系统 (a)微纳光纤自动制备系统示意图; (b)微纳光纤自动制备流程图

    Fig. 2.  Automatic preparation system of micro-nanofiber based on deep learning: (a) Schematic diagram of micro-nanofiber automatic preparation system; (b) flow diagram of micro-nanofiber automatic preparation.

    图 3  YOLOv8-FD网络训练结果 (a)检测框Loss曲线; (b)图像分割Loss曲线; (c)评估指标mAPIoU=50曲线; (d)评估指标mAPIoU=50—95曲线

    Fig. 3.  YOLOv8-FD network training results: (a) Loss curve of the detection box; (b) loss curve of image segmentation; (c) the evaluation index mAPIoU=50 curve; (d) the evaluation index mAPIoU=50—95 curve.

    图 4  YOLOv8-FD热图可视化及结果 (a)第1层卷积层; (b)第4层卷积层; (c)第7层卷积层; (d)第10层卷积层; (e) 1280$ \times $1024 pixel微纳光纤图; (f) 640$ \times $512 pixel微纳光纤图; (g)图像分割时间9.8 ms; (h)图像分割时间9.5 ms

    Fig. 4.  YOLOv8-FD heatmap visualization and segmentation results: (a) Layer 1 convolution layer; (b) layer 4 convolution layer; (c) layer 7 convolution layer; (d) layer 10 convolution layer; (e) 1280$ \times $1024 pixel micro-nanofiber image; (f) 640$ \times $512 pixel micro-nanofiber image; (g) image segmentation time 9.8 ms; (h) image segmentation time 9.5 ms.

    图 5  原始YOLOv8与YOLOv8-FD图像分割结果对比 (a)—(d) YOLOv8不同尺度目标图像分割结果; (e)—(h) YOLOv8-FD不同尺度目标图像分割结果

    Fig. 5.  Comparison of segmentation results between original YOLOv8 and YOLOv8-FD images: (a)–(d) Original YOLOv8 different scale target image segmentation results; (e)–(h) YOLOv8-FD different scale target image segmentation results.

    图 6  (a)—(c)不同直径微纳光纤的原子力显微镜(AFM)扫描图; (d)—(f) 相应的光学显微图, 红色方框标记出AFM的扫描位置和ROI

    Fig. 6.  (a)–(c) Atomic force microscope (AFM) scanning of micro-nanofiber of different diameters; (d)–(f) optical imaging of micro-nanofiber with different diameters and AFM scanning position, and the red box marks the scan location for AFM and ROI.

    表 1  标定系数测量结果

    Table 1.  Measurement results of micro-nanofiber diameter.

    标定次数 1 2 3 4
    像素个数/pixel 845.01 843.52 844.25 843.24
    标定系数/(nm·pixel–1) 65.89 66.01 65.95 66.03
    下载: 导出CSV

    表 2  微纳光纤直径测量结果

    Table 2.  Measurement results of micro-nanofiber diameter.

    光纤图示 $ {{d}}_{1}/ $μm
    AFM图示 $ {{d}}_{2}/ $μm
    $ {\varepsilon }/{\%} $
    图5(d) 0.489 图5(a) 0.475 2.95
    图5(e) 0.731 图5(b) 0.714 2.38
    图5(f) 1.935 图5(c) 1.907 1.47
    下载: 导出CSV
  • [1]

    童利民 2022 光学学报 42 17Google Scholar

    Tong L M 2022 Acta Opt. Sin. 42 17Google Scholar

    [2]

    Zhang L, Pan J, Zhang Z, Wu H, Yao N, Cai D W, Xu Y X, Zhang J, Sun G F, Wang L Q, Geng W D, Jin W G, Fang W, Di D W, Tong L M 2020 Opto-Electron Adv. 3 190022Google Scholar

    [3]

    Yan Z Y, Wang J J, Wang C Y, Yu R W, Shi L, Xiao L M 2022 Opt. Express 30 18044Google Scholar

    [4]

    Cen Q Q, Pian S J, Liu X H, Tang Y W, He X Y, Ma Y G 2023 eLight 3 9Google Scholar

    [5]

    Li Y H, Wang L Z, Li L J, Tong L M 2019 Appl. Phys. B 125 192Google Scholar

    [6]

    Lu J S, Li Q, Qiu C W, Hong Y, Ghosh P, Qiu M 2019 Sci. Adv. 5 8271Google Scholar

    [7]

    Tkachenko G, Toftul I, Esporlas C, Maimaiti A, Kien F L, Truong V G, Chormaic S N 2020 Optica 7 59Google Scholar

    [8]

    Linghu S Y, Gu Z Q, Lu J S, Fang W, Yang Z Y, Yu H K, Li Z Y, Zhu R L, Peng J, Zhan Q W, Zhuang S L, Gu M, Gu F X 2021 Nat. Commun. 12 385Google Scholar

    [9]

    Hao Z, Jiang B Q, Ma Y X, Yi R X, Gan X T, Zhao J L 2023 Opto-Electron Adv. 6 230012Google Scholar

    [10]

    Zhang J B, Kang Y, Guo X, Li Y H, Liu K Y, Xie Y, Wu H, Cai D W, Gong J, Shi Z X, Jin Y Y, Wang P, Fang W, Zhang L, Tong L M 2023 Light Sci. Appl. 12 89Google Scholar

    [11]

    Chen J H, Xiong Y F, Xu F, Lu Y Q 2021 Light Sci. Appl. 10 78Google Scholar

    [12]

    Zhou J, Li Y, Ma Y, Yang Q, Liu Q 2021 Opt. Lett. 46 1570Google Scholar

    [13]

    Linghu S Y, Ma Y N, Gu Z Q, Zhu R L, Liu Y F, Liu H J, Gu F X 2022 Opt. Express 30 22755Google Scholar

    [14]

    Liao F, Yu J X, Gu Z Q, Yang Z Y, Hasan T, Linghu S Y, Pang J, Fang W, Zhuang S L, Gu M, Gu F X 2019 Sci. Adv. 5 7398Google Scholar

    [15]

    康仪, 刘可盈, 谢宇, 龚珏, 姚妮, 方伟, 郭欣, 张磊, 王攀, 童利民 2020 中国科学: 物理学 力学 天文学 50 084212Google Scholar

    Kang Y, Liu K Y, Xie Y, Gong Y, Yao N, Fang W, Guo X, Zhang L, Wang P, Tong L M 2020 Sci. Sin. Phys. Mech. As. 50 084212Google Scholar

    [16]

    Ni Y, Linghu S L, Xu Y X, Zhu R L, Zhou N, Gu F X, Zhang L, Fang W, Ding W, Tong L M 2020 IEEE Photon. Technol. Lett. 32 1069Google Scholar

    [17]

    Warken F, Giessen H 2004 Opt. Lett. 29 1727Google Scholar

    [18]

    Little D J, Kane D M 2014 Opt. Lett. 39 5196Google Scholar

    [19]

    Yu Y, Zhang X L, Song Z Q, Wang J F, Meng Z 2014 Appl. Opt. 53 8222Google Scholar

    [20]

    Xu Y X, Fang W, Tong L M 2017 Opt. Express 25 10434Google Scholar

    [21]

    Kang Y, Gong J, Xu Y X, Yao N, Fang W, Guo X, Tong L M 2020 IEEE Photon. Technol. Lett. 32 219Google Scholar

    [22]

    Azzoune A, Delaye P, Pauliat G 2019 Opt. Express 27 24403Google Scholar

    [23]

    李华, 麻艳娜, 谷付星 2022 光学仪器 44 1005Google Scholar

    Li H, Ma Y N, Gu F X 2022 Opt. Instruments 44 1005Google Scholar

    [24]

    Woo S, Park J, Lee J Y 2017 ECCV 3 19Google Scholar

    [25]

    应大卫, 张思慧, 邓书金, 武海斌 2023 物理学报 72 144201Google Scholar

    Ying D W, Zhang S H, Deng S J, Wu H B 2023 Acta Phys. Sin. 72 144201Google Scholar

    [26]

    南虎, 麻晓晶, 赵海博, 汤少杰, 刘卫华, 王大威, 贾春林 2021 物理学报 70 076803Google Scholar

    Nan H, Ma X J, Zhao H B, Tang S J, Liu W H, Wang D W, Jia C L 2021 Acta Phys. Sin. 70 076803Google Scholar

    [27]

    He K M, Gkioxari G, Dollar P, Girshick R 2017 ICCV 17 2980Google Scholar

    [28]

    Gu Z, Zhu R L, Shen T C, Dou L, Liu H J, Liu Y F, Liu X, Liu J, Zhuang S L, Gu F X 2023 Nat. Commun. 14 7663Google Scholar

  • [1] 吴婉玲, 王向珂, 虞华康, 李志远. 基于微纳光纤双模式干涉的亚波长聚焦光场及光捕获应用. 物理学报, 2024, 73(10): 100401. doi: 10.7498/aps.73.20240181
    [2] 欧秀娟, 肖奕. RNA扭转角预测的深度学习方法. 物理学报, 2023, 72(24): 248703. doi: 10.7498/aps.72.20231069
    [3] 孙涛, 袁健美. 基于深度学习原子特征表示方法的Janus过渡金属硫化物带隙预测. 物理学报, 2023, 72(2): 028901. doi: 10.7498/aps.72.20221374
    [4] 战庆亮, 葛耀君, 白春锦. 基于深度学习的流场时程特征提取模型. 物理学报, 2022, 71(7): 074701. doi: 10.7498/aps.71.20211373
    [5] 张航瑛, 王雪琦, 王华英, 曹良才. 基于明度分量的Retinex-Net图像增强改进方法. 物理学报, 2022, 71(11): 110701. doi: 10.7498/aps.71.20220099
    [6] 徐昭, 周昕, 白星, 李聪, 陈洁, 倪洋. 基于深度学习的相位截断傅里叶变换非对称加密系统攻击方法. 物理学报, 2021, 70(14): 144202. doi: 10.7498/aps.70.20202075
    [7] 王甜甜, 王慧, 朱艳春, 王丽嘉. 基于位移流U-Net和变分自动编码器的心脏电影磁共振图像左心肌运动追踪. 物理学报, 2021, 70(22): 228701. doi: 10.7498/aps.70.20210885
    [8] 南虎, 麻晓晶, 赵海博, 汤少杰, 刘卫华, 王大威, 贾春林. 基于YOLOv3框架的高分辨电镜图像原子峰位置检测. 物理学报, 2021, 70(7): 076803. doi: 10.7498/aps.70.20201502
    [9] 苏博, 陶芬, 李可, 杜国浩, 张玲, 李中亮, 邓彪, 谢红兰, 肖体乔. 同步辐射纳米CT图像配准方法研究. 物理学报, 2021, 70(16): 160704. doi: 10.7498/aps.70.20210156
    [10] 张瑶, 张云波, 陈立. 基于深度学习的光学表面杂质检测. 物理学报, 2021, 70(16): 168702. doi: 10.7498/aps.70.20210403
    [11] 赵智鹏, 周双, 王兴元. 基于深度学习的新混沌信号及其在图像加密中的应用. 物理学报, 2021, 70(23): 230502. doi: 10.7498/aps.70.20210561
    [12] 郎利影, 陆佳磊, 于娜娜, 席思星, 王雪光, 张雷, 焦小雪. 基于深度学习的联合变换相关器光学图像加密系统去噪方法. 物理学报, 2020, 69(24): 244204. doi: 10.7498/aps.69.20200805
    [13] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法. 物理学报, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [14] 李杰, 李蒙蒙, 孙立朋, 范鹏程, 冉洋, 金龙, 关柏鸥. 保偏微纳光纤倏逝场传感器. 物理学报, 2017, 66(7): 074209. doi: 10.7498/aps.66.074209
    [15] 吴涛, 金义富, 侯睿, 杨俊杰. 不确定性边缘表示与提取的认知物理学方法. 物理学报, 2013, 62(6): 064201. doi: 10.7498/aps.62.064201
    [16] 刘颖刚, 车伏龙, 贾振安, 傅海威, 王宏亮, 邵敏. 微纳光纤布拉格光栅折射率传感特性研究. 物理学报, 2013, 62(10): 104218. doi: 10.7498/aps.62.104218
    [17] 宋长新, 马克, 秦川, 肖鹏. 结合稀疏编码和空间约束的红外图像聚类分割研究. 物理学报, 2013, 62(4): 040702. doi: 10.7498/aps.62.040702
    [18] 侯建平, 赵晨阳, 杨楠, 郝建苹, 赵建林. 微纳光纤端面反射特性的实验测量方法. 物理学报, 2013, 62(14): 144216. doi: 10.7498/aps.62.144216
    [19] 梁瑞冰, 孙琪真, 沃江海, 刘德明. 微纳尺度光纤布拉格光栅折射率传感的理论研究. 物理学报, 2011, 60(10): 104221. doi: 10.7498/aps.60.104221
    [20] 唐英干, 邸秋艳, 赵立兴, 关新平, 刘福才. 基于二维最小Tsallis交叉熵的图像阈值分割方法. 物理学报, 2009, 58(1): 9-15. doi: 10.7498/aps.58.9
计量
  • 文章访问数:  2405
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-25
  • 修回日期:  2024-03-04
  • 上网日期:  2024-03-27
  • 刊出日期:  2024-05-20

/

返回文章
返回