搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气湍流对空间相干光通信的相干探测性能影响

刘宇韬 徐苗 付兴虎 付广伟

引用本文:
Citation:

大气湍流对空间相干光通信的相干探测性能影响

刘宇韬, 徐苗, 付兴虎, 付广伟

Influence of atmospheric turbulence on coherent detection performance of space coherent optical communication

Liu Yu-Tao, Xu Miao, Fu Xing-Hu, Fu Guang-Wei
PDF
HTML
导出引用
  • 空间相干光通信被认为是突破现有高速空间通信瓶颈的重要手段, 但其应用受到大气湍流的极大限制. 为此, 本文首先基于Huygens-Fresnel原理和低频补偿功率谱反演法, 研究了高斯光束经大气湍流传输后振幅和相位的随机分布特性; 然后, 利用相干混频效率及通信误码率模型, 获得大气湍流对空间相干光通信系统性能的影响规律; 最后, 搭建激光外差探测实验系统, 定量研究了大气湍流对空间相干光通信相干探测性能的影响. 结果表明: 弱湍流条件下, 空间相干光通信性能几乎不受大气湍流的影响; 中等强度湍流影响下, 相干混频效率会随着湍流强度的增大而迅速下降, 但通过提高单比特光子数可以有效抑制湍流对通信性能的负面影响; 强湍流会显著破坏光束相干性, 使得相干混频效率趋近于零, 即使提高单比特光子数也无法有效改善通信性能. 大气湍流是空间相干光通信发展的重要限制因素, 该研究可为空间相干光通信系统性能评估提供有益参考.
    Space coherent optical communication technology is considered to be an important way to overcome the bottleneck in current high-speed space communication. However, atmospheric turbulence seriously limits its realization. Based on the Huygens-Fresnel principle and the low-frequency compensation power spectrum inversion method, this work first investigates the random distribution characteristics of the amplitude and phase of a Gaussian beam after it has been transmitted through atmospheric turbulence. Then, using the coherent mixing efficiency and communication bit error rate model, the influence of atmospheric turbulence on the performance of spatial coherent optical communication systems is obtained. Finally, a laser heterodyne detection experimental system is built to quantitatively study the influence of atmospheric turbulence on the coherent detection performance of spatial coherent optical communication. The conclusions drawn from this study are as follows. 1) The spatial phase distortion caused by the weak turbulence channel is relatively small and will hardly affect the light intensity distribution characteristics of the Gaussian beam. In the case of weak turbulence, the influence of weak turbulence on the performance of coherent optical communication system is almost negligible. The communication bit error rate will decrease rapidly with the increase of the number of single bit data photons. The communication signal-to-noise ratio can be better than 10–5 when the number of single-bit photons is greater than 10. 2) Moderate turbulence will change the intensity distribution characteristics of the Gaussian beam, but will not cause a serious shift in the center of the spot. Under moderate turbulence conditions, the coherent mixing efficiency decreases rapidly as the turbulence intensity continues to increase, but the communication bit error rate still decreases rapidly with the increase of the number of single bit data photons. At this time, increasing the number of single-bit photons can suppress the negative influence of moderate intensity turbulence on the performance of coherent optical communication systems. 3) Strong turbulence will cause severe spatial phase distortion of the beam, destroy the consistency of the light intensity distribution, and cause a serious shift in the center of the spot. Under strong turbulence conditions, the coherent mixing efficiency of coherent optical communication systems approaches zero, and increasing the number of single bit data photons cannot significantly reduce the bit error rate, seriously affecting the quality of coherent optical communication. Atmospheric turbulence is an important limiting factor for developing space coherent optical communication. This study can provide useful references for evaluating the performance of space coherent optical communication systems.
      通信作者: 刘宇韬, ytliu@ysu.edu.cn
    • 基金项目: 国家重点研究发展计划(批准号: 2019YFC1407904)、河北省自然科学基金(批准号: F2022203011)、河北省高等学校科学技术研究项目(批准号: QN2022112)和自然资源部海洋观测技术重点实验室开放基金(批准号: 2021klootA07)资助的课题.
      Corresponding author: Liu Yu-Tao, ytliu@ysu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFC1407904), the Natural Science Foundation of Hebei Province, China (Grant No. F2022203011), the Science and Technology Project of Education Department of Hebei Province, China (Grant No. QN2022112), and the Open Fund Project of Key Laboratory of Ocean Observation Technology (Grant No. 2021klootA07).
    [1]

    李锐, 林宝军, 刘迎春, 沈苑, 董明佶, 赵帅, 孔陈杰, 刘恩权, 林夏 2023 红外与激光工程 52 20220393Google Scholar

    Li R, Lin B J, Liu Y C, Shen Y, Dong M J, Zhao S, Kong C J, Liu N Q, Lin X 2023 Infrared Laser Eng. 52 20220393Google Scholar

    [2]

    张家铭 2023 光通信技术 47 37Google Scholar

    Zhang J M 2023 Opt. Commun. Technol. 47 37Google Scholar

    [3]

    Zhang T, Mao S, Fu Q, Cao G X, Su S, Jiang H L 2017 J. Laser Appl. 29 012013Google Scholar

    [4]

    Fu Q, Liu X, Jiang H L, Hu Y, Jiang L 2014 SPIE 9300 930029

    [5]

    高铎瑞, 谢壮, 马榕, 汪伟, 白兆峰, 郏帅威, 邵雯, 谢小平 2021 光子学报 50 0406001

    Gao D R, Xie Z, Ma R, Wang W, Bai Z F, Jia S W, Shao W, Xie X P 2021 Acta Photon. Sin. 50 0406001

    [6]

    Israel D J, Edwards B L, Staren J W 2017 IEEE Aerospace Conference Proceedings Big Sky, MT, USA, March 4–11, 2017 pp1–6

    [7]

    Robinson B S, Shih T, Khatri F I, Boroson D M, Hogan M J 2018 Free-Space Laser Communication and Atmospheric Propagation XXX, San Francisco, USA, February 15, 2018 p105240S

    [8]

    Gregory M, Heine F, Kämpfner H, Lange R, Saucke K, Sterr U, Meyer R 2010 Free-Space Laser Communication Technologies XXII, San Francisco, USA, February 26, 2010 75870E

    [9]

    Hauschildt H, le Gallou N, Mezzasoma S, Ludwig Moeller H, Perdigues Armengol J, Witting M, Herrmann J, Carmona C 2018 International Conference on Space Optics, Chania, GREECE, October 09–12, 2018 p111800X

    [10]

    Satoh Y, Miyamoto Y, Takano Y, Yamakawa S, Kohata H 2017 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Okinawa, JAPAN, November 14–16, 2017, p240

    [11]

    Munemasa Y, Kolev D R, Fuse T, Kubo-oka T, Kunimori H, Carrasco-Casado A, Takenaka H, Saito Y, Trinh P V, Suzuki K, Koyama Y, Toyoshima M 2018 Free-Space Laser Communication and Atmospheric Propagation XXX, San Francisco, USA, January 29–30, 2018 p105240F

    [12]

    任建迎, 孙华燕, 张来线, 张天齐 2019 激光与红外 49 143Google Scholar

    Ren J Y, Sun H Y, Zhang L X, Zhang T Q 2019 Laser Infr. 49 143Google Scholar

    [13]

    崔岳, 唐勇 2020 国际太空 7 38Google Scholar

    Cui Y, Tang Y 2020 Space Int. 7 38Google Scholar

    [14]

    Wan Z S, Shen Y J, Wang Z Y, Shi Z J, Liu Q, Fu X 2022 Light Sci. Appl. 11 144Google Scholar

    [15]

    Wang L Q, Wang J C, Tang X Y, Chen H, Chen X 2022 Opt. Express 30 7854Google Scholar

    [16]

    李艳玲, 梅海平, 任益充, 张骏昕, 陶志炜, 艾则孜姑丽⋅阿不都克热木, 刘世韦 2022 物理学报 71 140201Google Scholar

    Li Y L, Mei H P, Ren Y C, Zhang J X, Tao Z W, Aizeziguli A, Liu S W 2022 Acta Phys. Sin. 71 140201Google Scholar

    [17]

    Yang Y F, Yan C X, Hu C H, Wu C J 2017 Opt. Express 25 7567Google Scholar

    [18]

    Salem M, Rolland J P 2010 J. Opt. Soc. Am. A 27 1111Google Scholar

    [19]

    Liu Y, Gao M, Zeng X, Liu F, Bi W 2021 Opt. Laser Eng. 146 106694Google Scholar

    [20]

    Geng J N, Feng Z J, Cao C Q, Feng S M, Xu X K, Shang Y J, Wu Z Y, Yan X 2021 Opt. Express 29 39016Google Scholar

    [21]

    Zheng D H, Li Y, Zhou H H, Bian Y M, Yang C, Li W, Qiu J F, Guo H X, Hong X B, Zuo Y, Giles I P, Tong W J, Wu J 2018 Opt. Express 26 28879Google Scholar

    [22]

    Zhang H, Xu L, Guo Y F, Cao J T, Liu W, Yang L Q 2022 Opt. Express 30 7477Google Scholar

    [23]

    孔英秀, 柯熙政, 杨媛 2015 激光与光电子学进展 52 95

    Kong Y X, Ke X Z, Yang Y 2015 Laser Optoelectron Prog. 52 95

    [24]

    Liu C, Chen S Q, Li X Y, Xian H 2014 Opt. Express 22 15554Google Scholar

    [25]

    Schmidt J D 2010 Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (Bellingha: SPIE) pp157–163

    [26]

    艾则孜姑丽⋅阿不都克热木, 陶志炜, 刘世韦, 李艳玲, 饶瑞中, 任益充 2022 物理学报 71 234201Google Scholar

    Aizeziguli A, Tao Z W, Liu S W, Li Y L, Rao R Z, Ren Y C 2022 Acta Phys. Sin. 71 234201Google Scholar

    [27]

    徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元 2020 物理学报 69 014209Google Scholar

    Xu Q W, Wang P P, Zeng Z J, Huang Z B, Zhou X X, Liu J M, Li Y, Chen S Q, Fan Z Y 2020 Acta Phys. Sin. 69 014209Google Scholar

    [28]

    闫旭, 张文睿, 曹长庆, 冯喆珺 2021 光子学报 50 312

    Yan X, Zhang W R, Cao C Q, Feng Z J 2021 Acta Photonica Sin. 50 312

    [29]

    Wu Z Y, Cao C Q, Feng Z J, Wu X N, Duan C X 2023 Opt. Lett. 48 5257Google Scholar

  • 图 1  相干探测系统示意图

    Fig. 1.  Schematic illustration of the coherent detection scheme.

    图 2  大气湍流相位屏仿真结果 (a)弱湍流$ C_n^2 $=2×10–17 m–2/3; (b)中湍流$ C_n^2 $=2×10–15 m–2/3; (c)强湍流$ C_n^2 $=2×10–13 m–2/3

    Fig. 2.  Simulation results of atmospheric turbulence phase screen: (a) Weak turbulence $ C_n^2 $=2×10–17 m–2/3; (b) moderate turbulence $ C_n^2 $=2×10–15 m–2/3; (c) strong turbulence $ C_n^2 $=2×10–13 m–2/3.

    图 3  大气湍流扰动下的光强分布仿真结果 (a)弱湍流$ C_n^2 $=2×10–17 m–2/3; (b)中湍流$ C_n^2 $=2×10–15 m–2/3; (c)强湍流$ C_n^2 $=2×10–13 m–2/3

    Fig. 3.  Simulation results of light intensity distribution under atmospheric turbulence disturbance: (a) Weak turbulence $ C_n^2 $=2×10–17 m–2/3; (b) moderate turbulence $ C_n^2 $=2×10–15 m–2/3; (c) strong turbulence $ C_n^2 $=2×10–13 m–2/3.

    图 4  大气湍流扰动下的相干混频效率

    Fig. 4.  Results of coherent mixing efficiency under atmospheric turbulence disturbance.

    图 5  大气湍流扰动下的通信误码率随单比特光子数的变化曲线

    Fig. 5.  Results of coherent mixing efficiency under atmospheric turbulence disturbance.

    图 6  光外差探测系统

    Fig. 6.  Optical heterodyne detection system.

    图 7  大气湍流扰动下的相干混频效率的实验结果

    Fig. 7.  Experiment results of coherent mixing efficiency under atmospheric turbulence disturbance.

  • [1]

    李锐, 林宝军, 刘迎春, 沈苑, 董明佶, 赵帅, 孔陈杰, 刘恩权, 林夏 2023 红外与激光工程 52 20220393Google Scholar

    Li R, Lin B J, Liu Y C, Shen Y, Dong M J, Zhao S, Kong C J, Liu N Q, Lin X 2023 Infrared Laser Eng. 52 20220393Google Scholar

    [2]

    张家铭 2023 光通信技术 47 37Google Scholar

    Zhang J M 2023 Opt. Commun. Technol. 47 37Google Scholar

    [3]

    Zhang T, Mao S, Fu Q, Cao G X, Su S, Jiang H L 2017 J. Laser Appl. 29 012013Google Scholar

    [4]

    Fu Q, Liu X, Jiang H L, Hu Y, Jiang L 2014 SPIE 9300 930029

    [5]

    高铎瑞, 谢壮, 马榕, 汪伟, 白兆峰, 郏帅威, 邵雯, 谢小平 2021 光子学报 50 0406001

    Gao D R, Xie Z, Ma R, Wang W, Bai Z F, Jia S W, Shao W, Xie X P 2021 Acta Photon. Sin. 50 0406001

    [6]

    Israel D J, Edwards B L, Staren J W 2017 IEEE Aerospace Conference Proceedings Big Sky, MT, USA, March 4–11, 2017 pp1–6

    [7]

    Robinson B S, Shih T, Khatri F I, Boroson D M, Hogan M J 2018 Free-Space Laser Communication and Atmospheric Propagation XXX, San Francisco, USA, February 15, 2018 p105240S

    [8]

    Gregory M, Heine F, Kämpfner H, Lange R, Saucke K, Sterr U, Meyer R 2010 Free-Space Laser Communication Technologies XXII, San Francisco, USA, February 26, 2010 75870E

    [9]

    Hauschildt H, le Gallou N, Mezzasoma S, Ludwig Moeller H, Perdigues Armengol J, Witting M, Herrmann J, Carmona C 2018 International Conference on Space Optics, Chania, GREECE, October 09–12, 2018 p111800X

    [10]

    Satoh Y, Miyamoto Y, Takano Y, Yamakawa S, Kohata H 2017 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Okinawa, JAPAN, November 14–16, 2017, p240

    [11]

    Munemasa Y, Kolev D R, Fuse T, Kubo-oka T, Kunimori H, Carrasco-Casado A, Takenaka H, Saito Y, Trinh P V, Suzuki K, Koyama Y, Toyoshima M 2018 Free-Space Laser Communication and Atmospheric Propagation XXX, San Francisco, USA, January 29–30, 2018 p105240F

    [12]

    任建迎, 孙华燕, 张来线, 张天齐 2019 激光与红外 49 143Google Scholar

    Ren J Y, Sun H Y, Zhang L X, Zhang T Q 2019 Laser Infr. 49 143Google Scholar

    [13]

    崔岳, 唐勇 2020 国际太空 7 38Google Scholar

    Cui Y, Tang Y 2020 Space Int. 7 38Google Scholar

    [14]

    Wan Z S, Shen Y J, Wang Z Y, Shi Z J, Liu Q, Fu X 2022 Light Sci. Appl. 11 144Google Scholar

    [15]

    Wang L Q, Wang J C, Tang X Y, Chen H, Chen X 2022 Opt. Express 30 7854Google Scholar

    [16]

    李艳玲, 梅海平, 任益充, 张骏昕, 陶志炜, 艾则孜姑丽⋅阿不都克热木, 刘世韦 2022 物理学报 71 140201Google Scholar

    Li Y L, Mei H P, Ren Y C, Zhang J X, Tao Z W, Aizeziguli A, Liu S W 2022 Acta Phys. Sin. 71 140201Google Scholar

    [17]

    Yang Y F, Yan C X, Hu C H, Wu C J 2017 Opt. Express 25 7567Google Scholar

    [18]

    Salem M, Rolland J P 2010 J. Opt. Soc. Am. A 27 1111Google Scholar

    [19]

    Liu Y, Gao M, Zeng X, Liu F, Bi W 2021 Opt. Laser Eng. 146 106694Google Scholar

    [20]

    Geng J N, Feng Z J, Cao C Q, Feng S M, Xu X K, Shang Y J, Wu Z Y, Yan X 2021 Opt. Express 29 39016Google Scholar

    [21]

    Zheng D H, Li Y, Zhou H H, Bian Y M, Yang C, Li W, Qiu J F, Guo H X, Hong X B, Zuo Y, Giles I P, Tong W J, Wu J 2018 Opt. Express 26 28879Google Scholar

    [22]

    Zhang H, Xu L, Guo Y F, Cao J T, Liu W, Yang L Q 2022 Opt. Express 30 7477Google Scholar

    [23]

    孔英秀, 柯熙政, 杨媛 2015 激光与光电子学进展 52 95

    Kong Y X, Ke X Z, Yang Y 2015 Laser Optoelectron Prog. 52 95

    [24]

    Liu C, Chen S Q, Li X Y, Xian H 2014 Opt. Express 22 15554Google Scholar

    [25]

    Schmidt J D 2010 Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (Bellingha: SPIE) pp157–163

    [26]

    艾则孜姑丽⋅阿不都克热木, 陶志炜, 刘世韦, 李艳玲, 饶瑞中, 任益充 2022 物理学报 71 234201Google Scholar

    Aizeziguli A, Tao Z W, Liu S W, Li Y L, Rao R Z, Ren Y C 2022 Acta Phys. Sin. 71 234201Google Scholar

    [27]

    徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元 2020 物理学报 69 014209Google Scholar

    Xu Q W, Wang P P, Zeng Z J, Huang Z B, Zhou X X, Liu J M, Li Y, Chen S Q, Fan Z Y 2020 Acta Phys. Sin. 69 014209Google Scholar

    [28]

    闫旭, 张文睿, 曹长庆, 冯喆珺 2021 光子学报 50 312

    Yan X, Zhang W R, Cao C Q, Feng Z J 2021 Acta Photonica Sin. 50 312

    [29]

    Wu Z Y, Cao C Q, Feng Z J, Wu X N, Duan C X 2023 Opt. Lett. 48 5257Google Scholar

  • [1] 艾则孜姑丽·阿不都克热木, 陶志炜, 刘世韦, 李艳玲, 饶瑞中, 任益充. 大气湍流对接收光场时间相干特性的影响. 物理学报, 2022, 71(23): 234201. doi: 10.7498/aps.71.20221202
    [2] 贺锋涛, 杜迎, 张建磊, 房伟, 李碧丽, 朱云周. Gamma-gamma海洋各向异性湍流下脉冲位置调制无线光通信的误码率研究. 物理学报, 2019, 68(16): 164206. doi: 10.7498/aps.68.20190452
    [3] 郑晓桐, 郭立新, 程明建, 李江挺. 基于重复编码的海上可见光通信大气信道建模. 物理学报, 2018, 67(21): 214206. doi: 10.7498/aps.67.20181112
    [4] 王飞, 余佳益, 刘显龙, 蔡阳健. 部分相干光束经过湍流大气传输研究进展. 物理学报, 2018, 67(18): 184203. doi: 10.7498/aps.67.20180877
    [5] 闫夏超, 朱江, 张蜡宝, 邢强林, 陈亚军, 朱宏权, 李舰艇, 康琳, 陈健, 吴培亨. 基于超导纳米线单光子探测器深空激光通信模型及误码率研究. 物理学报, 2017, 66(19): 198501. doi: 10.7498/aps.66.198501
    [6] 孙伟, 尹华磊, 孙祥祥, 陈腾云. 基于相干叠加态的非正交编码诱骗态量子密钥分发. 物理学报, 2016, 65(8): 080301. doi: 10.7498/aps.65.080301
    [7] 吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 弱相干光源测量设备无关量子密钥分发系统的性能优化分析. 物理学报, 2016, 65(10): 100302. doi: 10.7498/aps.65.100302
    [8] 刘李辉, 吕炜煜, 杨超, 麦灿基, 陈德鹏. 部分相干双曲余弦厄米高斯光束在非Kolmogorov大气湍流中的传输特性. 物理学报, 2015, 64(3): 034208. doi: 10.7498/aps.64.034208
    [9] 柯熙政, 王姣. 大气湍流中部分相干光束上行和下行传输偏振特性的比较. 物理学报, 2015, 64(22): 224204. doi: 10.7498/aps.64.224204
    [10] 杜亚男, 解文钟, 金璇, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 基于弱相干光源测量设备无关量子密钥分发系统的误码率分析. 物理学报, 2015, 64(11): 110301. doi: 10.7498/aps.64.110301
    [11] 王律强, 苏桐, 赵宝升, 盛立志, 刘永安, 刘舵. X射线通信系统的误码率分析. 物理学报, 2015, 64(12): 120701. doi: 10.7498/aps.64.120701
    [12] 李晓庆, 季小玲, 朱建华. 大气湍流中光束的高阶强度矩. 物理学报, 2013, 62(4): 044217. doi: 10.7498/aps.62.044217
    [13] 李成强, 张合勇, 王挺峰, 刘立生, 郭劲. 高斯-谢尔模光束在大气湍流中传输的相干特性研究. 物理学报, 2013, 62(22): 224203. doi: 10.7498/aps.62.224203
    [14] 刘扬阳, 吕群波, 张文喜. 大气湍流畸变对空间目标清晰干涉成像仿真研究. 物理学报, 2012, 61(12): 124201. doi: 10.7498/aps.61.124201
    [15] 季小玲. 湍流对部分相干双曲余弦高斯光束的瑞利区间的影响. 物理学报, 2011, 60(6): 064207. doi: 10.7498/aps.60.064207
    [16] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响. 物理学报, 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [17] 李晋红, 吕百达. 部分相干涡旋光束通过大气湍流上行和下行传输的比较研究. 物理学报, 2011, 60(7): 074205. doi: 10.7498/aps.60.074205
    [18] 仓吉, 张逸新. 斜程大气中聚焦J0相关部分相干光束的传输特性. 物理学报, 2009, 58(4): 2444-2450. doi: 10.7498/aps.58.2444
    [19] 陈晓文, 汤明玥, 季小玲. 大气湍流对部分相干厄米-高斯光束空间相干性的影响. 物理学报, 2008, 57(4): 2607-2613. doi: 10.7498/aps.57.2607
    [20] 季小玲, 肖 希, 吕百达. 大气湍流对多色部分空间相干光传输特性的影响. 物理学报, 2004, 53(11): 3996-4001. doi: 10.7498/aps.53.3996
计量
  • 文章访问数:  851
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-29
  • 修回日期:  2024-03-27
  • 上网日期:  2024-04-03
  • 刊出日期:  2024-05-20

/

返回文章
返回