-
Visible light communication (VLC) is a new type of wireless communication technology, and its applications in offshore ships and ship-shore lamp signal systems are drawing increasing attention as a supplement of communication net. In maritime environment, VLC system is affected by many factors, of which the wave fluctuation and atmospheric turbulence are the most noticeable. The turbulence will make signal intensity fluctuate randomly, and thus reducing the performance of VLC system operating in the atmosphere. To establish an effective VLC network in the actual marine environment, an effective channel transmission model needs to be established and used to study the performance of the maritime VLC link. Considering large aperture diameter receiver with the aperture averaging effect, log-normal distribution model is employed to deduce the mathematical expression of average bit error rate of maritime VLC system in atmospheric turbulence. By using time-diversity to transmit interleaved symbols with repeated coding in a maritime VLC system, it is possible to ensure that the code-word passes through multiple channels to resist the deep fade performance, and to reduce the bit error rate due to the occurrence of deep fading in a single channel. In the actual application process, in order to improve the system performance, the average signal-to-noise ratio usually increases with the transmission power increasing, but for a VLC system, there are some difficulties in making the high-power high-rate visible light transmitters. And the power will produce light pollution and even damage the naked eye. The implementation of the repetitive coding principle is simple, and in some special cases it is even better than the complex orthogonal space-time coding and other schemes, so studying the system performance of the repetitive coding scheme is of considerable value for practical application. Based on the modified Pierson-Moskowitz spectrum, the effect of wave height, transmission distance, atmospheric turbulence intensity, receiver aperture size and visibility on the average bit error rate of VLC system are analyzed. The performance of the VLC system between lighthouse and ship is affected by the fluctuations of the sea waves, and the average bit error rate changes with randomness and complexity like the sea waves in a short distance. As the wind speed increases, the marine environment becomes worse and the average bit error rate is undulate. The average bit error rate of maritime VLC increases with the increasing of transmission distance and atmospheric turbulence intensity, and with the decreasing of receiver aperture size, wavelength and average signal-to-noise ratio. Atmospheric turbulence intensity and visibility have a significant effect on the system performance, and it should be emphatically considered to take measures to reduce the influence. Increasing receiver aperture and repetitive coding are effective to a certain extent. In the present work a new model is proposed for evaluating the performance of a maritime VLC system and providing reference for practical application.
[1] Mo Q Y, Zhao Y L 2011 Acta Phys. Sin. 60 072902 (in Chinese)[莫秋燕, 赵彦立 2015 物理学报 60 072902]
[2] Jovicic A, Li J, Richardson T, Research Q 2013 IEEE Commun. Mag. 51 26
[3] Grobe L, Paraskevopoulos A, Hilt J, Schulz D, Lassak F, Hartlieb F, Kottke C, Jungnickel V, Langer K, Institute H H 2013 IEEE Commun. Mag. 51 60
[4] Chai S R, Guo L X 2015 Acta Phys. Sin. 64 060301 (in Chinese)[柴水荣, 郭立新 2015 物理学报 64 060301]
[5] Ergul O, Dinc E, Akan O B 2015 Phys. Commun. 17 72
[6] Vetelino F S, Young C, Andrews L, Recolons J 2007 Appl. Opt. 46 2099
[7] Pang G, Kwan T, Chan C H, Liu H 1999 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems Proceedings Tokyo, Japan, October 5-8, 1999 p788
[8] Zhu N, Zhong Q, Zhu J 2008 Optoelectronic Materials and Devices Ⅲ Hangzhou, China, October 26-30, 2008 p71350E-1
[9] Kim H, Sewaiwar A, Chung Y H 2015 J. Opt. Soc. Korea 19 514
[10] Kim H, Chung Y H 2015 J. Korea Inst. Inf. Commun. Eng. 19 1773
[11] Kim H J, Tiwari S V, Chung Y H 2016 Chin. Opt. Lett. 14 050607
[12] Lin Y X, Ai Y, Shan X, Liu H Y 2014 J. Optoelectron. Laser 25 478 (in Chinese)[林贻翔, 艾勇, 单欣, 刘宏阳 2014 光电子·激光 25 478]
[13] Safari M, Uysal M 2008 IEEE Trans. Wireless Commun. 7 5441
[14] Wang T Y, Zhuang S L 2009 International Conference on Optical Instrumentation and Technology Shanghai, China, October 19-22, 2009 p251
[15] Sewaiwar A, Han P P, Tiwari S V, Chung Y H 2015 J. Opt. Soc. Korea 19 74
[16] Ghassemlooy Z, Popoola W, Rajbhandari S 2012 Optical Wireless Communications System and Channel Modelling with MATLAB (Florida: CRC Press) pp138-146
[17] Grayshan K J, Vetelino F S, Young C Y 2008 Waves Random Complex Medium 18 173
[18] Cheng M J, Guo L X, Zhang Y X 2015 Opt. Express 23 32606
[19] Naboulsi M C A, Sizun H 2004 Opt. Eng. 43 319
[20] Li Y Q, Wu Z S, Zhang Y Y, Zhang H L 2012 Adv. Mater. Res. 571 337
[21] Gracheva M E, Gurvich A S 1965 Soviet Radiophys. 8 717
[22] Cheng M J, Zhang Y X, Gao J, Wang F, Zhao F 2014 Appl. Opt. 53 4011
[23] Tse D, Viswanath P 2005 Fundamentals of Wireless Communication (Cambridge: Cambridge University Press) p62
[24] Li F 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)[李菲 2013 博士学位论文(合肥: 中国科学技术大学)]
期刊类型引用(10)
1. 刘婷婷,马向阳,董洁,陈萍. 一种灯塔平台可见光岸海远距离通信系统设计与实现. 电子制作. 2023(09): 56-60+28 . 百度学术 2. 许癸驹,钱雅楠,代红英,徐琴. 一种多信道条件下的光通信编码方案研究. 激光杂志. 2022(04): 144-147 . 百度学术 3. 张盛楠,杨书华,傅军栋. 基于遍历微元法的可见光移动通信链路损耗动态预测方法. 激光杂志. 2022(09): 164-168 . 百度学术 4. 贾兰芳,周小芳,吕丽君. 基于光信号强度检测法的可见光通信定位方法研究. 激光杂志. 2021(05): 97-101 . 百度学术 5. 阴欢欢,周建国. 误码检测机制的室内无线光通信系统研究. 激光杂志. 2021(08): 135-139 . 百度学术 6. 雍康乐,闫家伟,唐善发,张蓉竹. 彗差和球差对涡旋光束斜程传输特性的影响. 物理学报. 2020(01): 232-239 . 百度学术 7. 武梦龙,马富康,刘文楷. 中远距离室外可见光通信中噪声抑制方法. 激光与光电子学进展. 2020(13): 122-127 . 百度学术 8. 龙滔滔,高云婕. 基于蚁群算法的舰船无线通信网络资源分配. 舰船科学技术. 2020(20): 91-93 . 百度学术 9. 贺锋涛,杜迎,张建磊,房伟,李碧丽,朱云周. Gamma-gamma海洋各向异性湍流下脉冲位置调制无线光通信的误码率研究. 物理学报. 2019(16): 236-244 . 百度学术 10. 董乘志,秦庆磊. 基于误差校正和优化的可见光通信系统. 激光杂志. 2019(09): 94-97 . 百度学术 其他类型引用(8)
-
[1] Mo Q Y, Zhao Y L 2011 Acta Phys. Sin. 60 072902 (in Chinese)[莫秋燕, 赵彦立 2015 物理学报 60 072902]
[2] Jovicic A, Li J, Richardson T, Research Q 2013 IEEE Commun. Mag. 51 26
[3] Grobe L, Paraskevopoulos A, Hilt J, Schulz D, Lassak F, Hartlieb F, Kottke C, Jungnickel V, Langer K, Institute H H 2013 IEEE Commun. Mag. 51 60
[4] Chai S R, Guo L X 2015 Acta Phys. Sin. 64 060301 (in Chinese)[柴水荣, 郭立新 2015 物理学报 64 060301]
[5] Ergul O, Dinc E, Akan O B 2015 Phys. Commun. 17 72
[6] Vetelino F S, Young C, Andrews L, Recolons J 2007 Appl. Opt. 46 2099
[7] Pang G, Kwan T, Chan C H, Liu H 1999 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems Proceedings Tokyo, Japan, October 5-8, 1999 p788
[8] Zhu N, Zhong Q, Zhu J 2008 Optoelectronic Materials and Devices Ⅲ Hangzhou, China, October 26-30, 2008 p71350E-1
[9] Kim H, Sewaiwar A, Chung Y H 2015 J. Opt. Soc. Korea 19 514
[10] Kim H, Chung Y H 2015 J. Korea Inst. Inf. Commun. Eng. 19 1773
[11] Kim H J, Tiwari S V, Chung Y H 2016 Chin. Opt. Lett. 14 050607
[12] Lin Y X, Ai Y, Shan X, Liu H Y 2014 J. Optoelectron. Laser 25 478 (in Chinese)[林贻翔, 艾勇, 单欣, 刘宏阳 2014 光电子·激光 25 478]
[13] Safari M, Uysal M 2008 IEEE Trans. Wireless Commun. 7 5441
[14] Wang T Y, Zhuang S L 2009 International Conference on Optical Instrumentation and Technology Shanghai, China, October 19-22, 2009 p251
[15] Sewaiwar A, Han P P, Tiwari S V, Chung Y H 2015 J. Opt. Soc. Korea 19 74
[16] Ghassemlooy Z, Popoola W, Rajbhandari S 2012 Optical Wireless Communications System and Channel Modelling with MATLAB (Florida: CRC Press) pp138-146
[17] Grayshan K J, Vetelino F S, Young C Y 2008 Waves Random Complex Medium 18 173
[18] Cheng M J, Guo L X, Zhang Y X 2015 Opt. Express 23 32606
[19] Naboulsi M C A, Sizun H 2004 Opt. Eng. 43 319
[20] Li Y Q, Wu Z S, Zhang Y Y, Zhang H L 2012 Adv. Mater. Res. 571 337
[21] Gracheva M E, Gurvich A S 1965 Soviet Radiophys. 8 717
[22] Cheng M J, Zhang Y X, Gao J, Wang F, Zhao F 2014 Appl. Opt. 53 4011
[23] Tse D, Viswanath P 2005 Fundamentals of Wireless Communication (Cambridge: Cambridge University Press) p62
[24] Li F 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)[李菲 2013 博士学位论文(合肥: 中国科学技术大学)]
期刊类型引用(10)
1. 刘婷婷,马向阳,董洁,陈萍. 一种灯塔平台可见光岸海远距离通信系统设计与实现. 电子制作. 2023(09): 56-60+28 . 百度学术 2. 许癸驹,钱雅楠,代红英,徐琴. 一种多信道条件下的光通信编码方案研究. 激光杂志. 2022(04): 144-147 . 百度学术 3. 张盛楠,杨书华,傅军栋. 基于遍历微元法的可见光移动通信链路损耗动态预测方法. 激光杂志. 2022(09): 164-168 . 百度学术 4. 贾兰芳,周小芳,吕丽君. 基于光信号强度检测法的可见光通信定位方法研究. 激光杂志. 2021(05): 97-101 . 百度学术 5. 阴欢欢,周建国. 误码检测机制的室内无线光通信系统研究. 激光杂志. 2021(08): 135-139 . 百度学术 6. 雍康乐,闫家伟,唐善发,张蓉竹. 彗差和球差对涡旋光束斜程传输特性的影响. 物理学报. 2020(01): 232-239 . 百度学术 7. 武梦龙,马富康,刘文楷. 中远距离室外可见光通信中噪声抑制方法. 激光与光电子学进展. 2020(13): 122-127 . 百度学术 8. 龙滔滔,高云婕. 基于蚁群算法的舰船无线通信网络资源分配. 舰船科学技术. 2020(20): 91-93 . 百度学术 9. 贺锋涛,杜迎,张建磊,房伟,李碧丽,朱云周. Gamma-gamma海洋各向异性湍流下脉冲位置调制无线光通信的误码率研究. 物理学报. 2019(16): 236-244 . 百度学术 10. 董乘志,秦庆磊. 基于误差校正和优化的可见光通信系统. 激光杂志. 2019(09): 94-97 . 百度学术 其他类型引用(8)
计量
- 文章访问数: 7078
- PDF下载量: 101
- 被引次数: 18