搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拉盖尔-高斯光束在湍流大气中的螺旋谱特性

黎芳 唐华 江月松 欧军

引用本文:
Citation:

拉盖尔-高斯光束在湍流大气中的螺旋谱特性

黎芳, 唐华, 江月松, 欧军

Spiral spectrum of Laguerre-Gaussian beams propagating in turbulent atmosphere

Li Fang, Tang Hua, Jiang Yue-Song, Ou Jun
PDF
导出引用
  • 研究了拉盖尔-高斯光束在湍流大气中的传输特性.在利托夫近似下,得到接收孔径处光束的螺旋谱的积分表达式.通过数值仿真得出大气湍流对光束螺旋谱的影响以及光束螺旋谱随各参数值的变化特性.仿真发现大气湍流会使螺旋谱发生弥散.而且随着拓扑荷,接收孔径半径,折射率结构函数及距离的增加,螺旋谱弥散加剧.经拟合得到描述螺旋谱弥散程度的无量纲方差V随距离成6次函数关系;与接收孔径半径及折射率结构函数成二项式关系;而与拓扑荷呈11次多项式关系.最后得出径向指数,束腰半径对螺旋谱的影响非常小,并且根据此结论推出光
    An analysis of the propagation of Laguerre-Gaussian beam in fluctuation turbulent atmosphere is performed. Under the Rytov approximation, the integral expression of the spiral spectrum of the beam at the receiver aperture is obtained. It is found that the atmospheric turbulence will induce the spread of the spiral spectrum. With increasing topological charge, propagation distance, refractive index structure constant and radius of receiver aperture, the spectrum spread becomes more serious. It is also shown that the dimensionless variance describing the degree of the spread is a quadratic function of the refractive index structure constant and the radius of receiver aperture respectively, while it is an 11th order function of the topological charge and a 6th order function of the propagation distance. The analytical expression of the spiral spectrum is derived by taking account of the simulation results that both radial index and waist radius have little effect on the spiral spectrum.
    • 基金项目: CAST创新基金和北京航空航天大学博士研究生创新基金(批准号:292129)资助的课题.
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J, Woerdman J P 1992 Phys. Rev. A 45 8185

    [2]

    Sueda K, Miyaji G, Miyanaga N, Nakatsuka M 2004 Opt. Exp. 12 3548

    [3]

    Hasegawa T, Shimizu T 1999 Opt. Commun. 160 103

    [4]

    Liu Y D, Gao C Q, Gao M W 2008 Chin. Phys. B 17 1769

    [5]

    Chen Y F, Lan Y P, Wang S C 2001 Appl. Phys. B: Lasers & Opt. 72 167

    [6]

    Torner L, Torres J, Carrasco S 2005 Opt. Exp. 13 873

    [7]

    Simpson N, Dholakia K, Allen L, Padgett M 1997 Opt. Lett. 22 52

    [8]

    O'Neil A, Padgett M 2001 Opt. Commun. 193 45

    [9]

    Mair A, Vaziri A, Weihs G, Zellinger A 2001 Nature 412 313

    [10]

    Bouchal Z, Celechovsky R 2004 New J.Phys. 6 131

    [11]

    Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pas’ko V, Barnett S M, Franke-Arnold S 2004 Opt. Exp. 12 5448

    [12]

    Li F, Jiang Y S, Tang H, Wang H Y 2009 Acta Phys. Sin. 58 6202(in Chinese)[黎 芳、江月松、唐 华、王海洋 2009 物理学报58 6202]

    [13]

    Lü H, Ke X Z 2009 Acta Phys. Sin. 58 8302(in Chinese)[吕 宏、柯熙政 2009 物理学报58 8302]

    [14]

    Molina-Terriza G, Torres J, Torner L 2001 Phys. Rev. Lett. 88 13601

    [15]

    Wang F, Cai Y, Korotkova O 2009 Opt. Exp. 17 22366

    [16]

    Maleev I D, Swartzlander J G A 2003 J. Opt. Soc. Am. B 20 1169

    [17]

    Orlov S, Regelskis K, Smilgevi ius V, Stabinis A 2002 Opt. Commun. 209 155

    [18]

    Alieva T, Bastiaans M J 2004 Proceedings of SPIE, Bellingham,2004,1138

    [19]

    Gonzalez N, Molina-Terriza G, Torres J P 2006 Opt. Exp. 14 9093

    [20]

    Cai Y, He S 2006 Appl. Phys. B: Lasers & Opt. 84 493

    [21]

    Singh R P, Roychowdhury S, Jaiswal V K 2006 J. Mod. Opt. 53 1803

    [22]

    Seshadri S R 2002 Opt. Lett. 27 1872

    [23]

    Simon R, Agarwal G S 2000 Opt. Lett. 25 1313

    [24]

    Paterson C 2005 Phys. Rev. Lett. 94 153901

    [25]

    Anguita J, Neifeld M, Vasic B 2008 Appl. Opt. 47 2414

    [26]

    Rao R Z 2009 Chin. Phys. B 18 581

    [27]

    Gbur G, Tyson R K 2008 J. Opt. Soc. Am. A 25 225

    [28]

    Zhu K C, Zhou G Q, Li X G, Zheng X J, Tang H Q 2008 Opt. Exp. 16 21315

    [29]

    Chen B S, Chen Z Y, Pu J X 2008 Opt. & Laser Tech. 40 820

    [30]

    Wang T, Pu J X, Chen Z Y 2008 Opt. Eng. 47 036002

    [31]

    Li F, Gao C Q, Liu Y D, Gao M W 2008 Acta Phys. Sin. 57 860(in Chinese)[李 丰、高春清、刘义东、高明伟 2008 物理学报57 860]

    [32]

    Zhang Y X, Tang M X, Tao C K 2005 Chin. Opt. Lett. 3 559

    [33]

    Cai Y. 2006 J. Opt. A: Pure Appl. Opt. 8 537

    [34]

    Gradshteyn I S, Ryzhik I M 2007 Table Of Integrals, Series And Products 7Ed (Salt Lake City: Academic Press) P933,P340

    [35]

    Zambrini R, Barnett S M 2006 Phys. Rev. Lett. 96 113901

  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J, Woerdman J P 1992 Phys. Rev. A 45 8185

    [2]

    Sueda K, Miyaji G, Miyanaga N, Nakatsuka M 2004 Opt. Exp. 12 3548

    [3]

    Hasegawa T, Shimizu T 1999 Opt. Commun. 160 103

    [4]

    Liu Y D, Gao C Q, Gao M W 2008 Chin. Phys. B 17 1769

    [5]

    Chen Y F, Lan Y P, Wang S C 2001 Appl. Phys. B: Lasers & Opt. 72 167

    [6]

    Torner L, Torres J, Carrasco S 2005 Opt. Exp. 13 873

    [7]

    Simpson N, Dholakia K, Allen L, Padgett M 1997 Opt. Lett. 22 52

    [8]

    O'Neil A, Padgett M 2001 Opt. Commun. 193 45

    [9]

    Mair A, Vaziri A, Weihs G, Zellinger A 2001 Nature 412 313

    [10]

    Bouchal Z, Celechovsky R 2004 New J.Phys. 6 131

    [11]

    Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pas’ko V, Barnett S M, Franke-Arnold S 2004 Opt. Exp. 12 5448

    [12]

    Li F, Jiang Y S, Tang H, Wang H Y 2009 Acta Phys. Sin. 58 6202(in Chinese)[黎 芳、江月松、唐 华、王海洋 2009 物理学报58 6202]

    [13]

    Lü H, Ke X Z 2009 Acta Phys. Sin. 58 8302(in Chinese)[吕 宏、柯熙政 2009 物理学报58 8302]

    [14]

    Molina-Terriza G, Torres J, Torner L 2001 Phys. Rev. Lett. 88 13601

    [15]

    Wang F, Cai Y, Korotkova O 2009 Opt. Exp. 17 22366

    [16]

    Maleev I D, Swartzlander J G A 2003 J. Opt. Soc. Am. B 20 1169

    [17]

    Orlov S, Regelskis K, Smilgevi ius V, Stabinis A 2002 Opt. Commun. 209 155

    [18]

    Alieva T, Bastiaans M J 2004 Proceedings of SPIE, Bellingham,2004,1138

    [19]

    Gonzalez N, Molina-Terriza G, Torres J P 2006 Opt. Exp. 14 9093

    [20]

    Cai Y, He S 2006 Appl. Phys. B: Lasers & Opt. 84 493

    [21]

    Singh R P, Roychowdhury S, Jaiswal V K 2006 J. Mod. Opt. 53 1803

    [22]

    Seshadri S R 2002 Opt. Lett. 27 1872

    [23]

    Simon R, Agarwal G S 2000 Opt. Lett. 25 1313

    [24]

    Paterson C 2005 Phys. Rev. Lett. 94 153901

    [25]

    Anguita J, Neifeld M, Vasic B 2008 Appl. Opt. 47 2414

    [26]

    Rao R Z 2009 Chin. Phys. B 18 581

    [27]

    Gbur G, Tyson R K 2008 J. Opt. Soc. Am. A 25 225

    [28]

    Zhu K C, Zhou G Q, Li X G, Zheng X J, Tang H Q 2008 Opt. Exp. 16 21315

    [29]

    Chen B S, Chen Z Y, Pu J X 2008 Opt. & Laser Tech. 40 820

    [30]

    Wang T, Pu J X, Chen Z Y 2008 Opt. Eng. 47 036002

    [31]

    Li F, Gao C Q, Liu Y D, Gao M W 2008 Acta Phys. Sin. 57 860(in Chinese)[李 丰、高春清、刘义东、高明伟 2008 物理学报57 860]

    [32]

    Zhang Y X, Tang M X, Tao C K 2005 Chin. Opt. Lett. 3 559

    [33]

    Cai Y. 2006 J. Opt. A: Pure Appl. Opt. 8 537

    [34]

    Gradshteyn I S, Ryzhik I M 2007 Table Of Integrals, Series And Products 7Ed (Salt Lake City: Academic Press) P933,P340

    [35]

    Zambrini R, Barnett S M 2006 Phys. Rev. Lett. 96 113901

  • [1] 闫玠霖, 韦宏艳, 蔡冬梅, 贾鹏, 乔铁柱. 大气湍流信道中聚焦涡旋光束轨道角动量串扰特性. 物理学报, 2020, 69(14): 144203. doi: 10.7498/aps.69.20200243
    [2] 王飞, 余佳益, 刘显龙, 蔡阳健. 部分相干光束经过湍流大气传输研究进展. 物理学报, 2018, 67(18): 184203. doi: 10.7498/aps.67.20180877
    [3] 刘李辉, 吕炜煜, 杨超, 麦灿基, 陈德鹏. 部分相干双曲余弦厄米高斯光束在非Kolmogorov大气湍流中的传输特性. 物理学报, 2015, 64(3): 034208. doi: 10.7498/aps.64.034208
    [4] 柯熙政, 王姣. 大气湍流中部分相干光束上行和下行传输偏振特性的比较. 物理学报, 2015, 64(22): 224204. doi: 10.7498/aps.64.224204
    [5] 蔡冬梅, 遆培培, 贾鹏, 王东, 刘建霞. 非均匀采样的功率谱反演大气湍流相位屏的快速模拟. 物理学报, 2015, 64(22): 224217. doi: 10.7498/aps.64.224217
    [6] 李成强, 王挺峰, 张合勇, 谢京江, 刘立生, 郭劲. 光源参数及大气湍流对电磁光束传输偏振特性的影响. 物理学报, 2014, 63(10): 104201. doi: 10.7498/aps.63.104201
    [7] 李晓庆, 王涛, 季小玲. 球差光束在大气湍流中传输特性的实验研究. 物理学报, 2014, 63(13): 134209. doi: 10.7498/aps.63.134209
    [8] 蔡冬梅, 王昆, 贾鹏, 王东, 刘建霞. 功率谱反演大气湍流随机相位屏采样方法的研究. 物理学报, 2014, 63(10): 104217. doi: 10.7498/aps.63.104217
    [9] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究. 物理学报, 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [10] 马媛, 季小玲. 倾斜离轴高斯-谢尔模型光束在大气湍流中通过猫眼光学镜头反射光的光强特性. 物理学报, 2013, 62(9): 094214. doi: 10.7498/aps.62.094214
    [11] 李成强, 张合勇, 王挺峰, 刘立生, 郭劲. 高斯-谢尔模光束在大气湍流中传输的相干特性研究. 物理学报, 2013, 62(22): 224203. doi: 10.7498/aps.62.224203
    [12] 李晓庆, 季小玲, 朱建华. 大气湍流中光束的高阶强度矩. 物理学报, 2013, 62(4): 044217. doi: 10.7498/aps.62.044217
    [13] 江月松, 王帅会, 欧军, 唐华. 基于拉盖尔-高斯光束的通信系统在非Kolmogorov湍流中传输的系统容量. 物理学报, 2013, 62(21): 214201. doi: 10.7498/aps.62.214201
    [14] 李晋红, 吕百达. 部分相干涡旋光束通过大气湍流上行和下行传输的比较研究. 物理学报, 2011, 60(7): 074205. doi: 10.7498/aps.60.074205
    [15] 刘飞, 季小玲. 双曲余弦高斯列阵光束在湍流大气中的光束传输因子. 物理学报, 2011, 60(1): 014216. doi: 10.7498/aps.60.014216
    [16] 季小玲. 大气湍流对径向分布高斯列阵光束扩展和方向性的影响. 物理学报, 2010, 59(1): 692-698. doi: 10.7498/aps.59.692
    [17] 杨爱林, 李晋红, 吕百达. 大气湍流中光束束宽扩展和角扩展的比较研究. 物理学报, 2009, 58(4): 2451-2460. doi: 10.7498/aps.58.2451
    [18] 郑巍巍, 王丽琴, 许静平, 王立刚. 带初相位分布的径向基模激光束列阵在湍流大气中的传输特性研究. 物理学报, 2009, 58(7): 5098-5103. doi: 10.7498/aps.58.5098
    [19] 黎芳, 江月松, 唐华, 王海洋. 光束偏移对轨道角动量信息传输系统的影响. 物理学报, 2009, 58(9): 6202-6209. doi: 10.7498/aps.58.6202
    [20] 陈晓文, 汤明玥, 季小玲. 大气湍流对部分相干厄米-高斯光束空间相干性的影响. 物理学报, 2008, 57(4): 2607-2613. doi: 10.7498/aps.57.2607
计量
  • 文章访问数:  6891
  • PDF下载量:  901
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-21
  • 修回日期:  2010-03-12
  • 刊出日期:  2011-01-15

拉盖尔-高斯光束在湍流大气中的螺旋谱特性

  • 1. 北京航空航天大学电子信息工程学院,北京 100191
    基金项目: CAST创新基金和北京航空航天大学博士研究生创新基金(批准号:292129)资助的课题.

摘要: 研究了拉盖尔-高斯光束在湍流大气中的传输特性.在利托夫近似下,得到接收孔径处光束的螺旋谱的积分表达式.通过数值仿真得出大气湍流对光束螺旋谱的影响以及光束螺旋谱随各参数值的变化特性.仿真发现大气湍流会使螺旋谱发生弥散.而且随着拓扑荷,接收孔径半径,折射率结构函数及距离的增加,螺旋谱弥散加剧.经拟合得到描述螺旋谱弥散程度的无量纲方差V随距离成6次函数关系;与接收孔径半径及折射率结构函数成二项式关系;而与拓扑荷呈11次多项式关系.最后得出径向指数,束腰半径对螺旋谱的影响非常小,并且根据此结论推出光

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回