搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光照-反射成像模型和形态学操作的多谱段图像增强算法

王殿伟 韩鹏飞 范九伦 刘颖 许志杰 王晶

引用本文:
Citation:

基于光照-反射成像模型和形态学操作的多谱段图像增强算法

王殿伟, 韩鹏飞, 范九伦, 刘颖, 许志杰, 王晶

Multispectral image enhancement based on illuminance-reflection imaging model and morphology operation

Wang Dian-Wei1\2, Han Peng-Fei, Fan Jiu-Lun, Liu Ying1\2, Xu Zhi-Jie, Wang Jing
PDF
导出引用
  • 为解决多谱段降质图像增强问题,提出了一种基于光照-反射成像模型和形态学操作的多谱段图像增强算法.首先对图像饱和度使用自适应非线性拉伸函数进行拉伸,使增强后的图像色彩更加饱和、自然;接下来利用引导滤波算法提取出图像的光照分量,提出了一种基于细节特征的加权融合策略,利用光照分布特性构造了一种自适应Gamma校正函数对光照分量进行处理,并将其与利用对比度受限的自适应直方图均衡化方法处理后的光照分量以及原始光照分量进行融合;然后在反射分量校正时,构造了一种形态学操作函数来校正反射信息;最后合并光照分量和反射分量,并与处理后的饱和度分量和色调分量一起得到增强图像.采用主客观评价指标对可见光低照度图像、水下图像、高动态范围图像、沙尘暴图像、雾天图像和热红外图像6种降质多谱段图像实验结果进行分析比较,结果表明本文算法能够有效地抑制图像噪声、增强图像细节信息、改善图像视觉效果,可应用于多种图像增强领域.
    In this paper we propose a multispectral image enhancement algorithm based on illuminance-reflection imaging model and morphology operation that enables us to solve the problem of improving the multispectral degraded images. Firstly, we transform the image from RGB space to HSV color space, and the hue remains unchanged. As for the saturation component, we use the adaptive nonlinear stretching to improve the image color saturation and brightness. Secondly, according to the illuminance-reflection imaging model, we adopt the guided image filtering method to decompose the brightness into illuminance component and reflection component. Usually, the illumination component mainly determines the dynamic range of the pixels in the image, corresponding to the low frequency part of the image, reflecting the global characteristics of the image and the edge detail information of the image; the reflected component represents the intrinsic essential characteristics of the image, corresponding to the high frequency part of the image, and contains most of the local detail information of the image as well as all noise. Thirdly, we present an improved adaptive gamma function, which can dynamically adjust the illuminance component by the local distribution characteristics, and use the contrast-limited adaptive histogram equalization to correct the illuminance component. Afterwards we propose a detail-feature weighted fusion strategy. The original illumination and the two corrected illuminations are fused to obtain the final illumination component. Fourthly, we propose an improved morphological operation to denoise and enhance the details of the reflection component. Finally, the corrected illumination component and the enhanced reflection component are combined to obtain the improved brightness component. In order to verify the efficiency of the algorithm proposed in the paper, we use both subjective visual effectiveness method and quantitative parameter analysis method to measure the enhancement performance in multispectral imaging scenarios, including low illumination image, underwater image, high-dynamic range image, sandstorm image, haze image and thermal infrared image. Then standard deviation, information entropy and average gradient are used as evaluation indices respectively, and qualitative and quantitative comparison with a variety of image enhancement algorithms show that the proposed algorithm can not only well suppress noise but also obviously improve local details and global contrast. Experimental results show that the proposed method proves to be better in performance.
      通信作者: 韩鹏飞, 13772405149@126.com
    • 基金项目: 国家自然科学基金(批准号:61671377)、2018陕西省自然科学基础研究计划科技创新创业"双导师"项目(批准号:2018JM6118)、2018西安邮电大学创新创业项目(批准号:2018SC-08)"(批准号:CXJJ2017057)资助的课题.
      Corresponding author: Han Peng-Fei, 13772405149@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61671377), the 2018 "Dual-Tutor System" Project for Innovation and Entrepreneurship of Natural Science Research Program of Shaanxi Province, China (Grant No. 2018JM6118), the Innovation and Entrepreneurship Project of Xi'an University of Posts and Telecommunications, China (Grant No. 2018SC-08), and the Xi'an University of Posts and Telecommunications Graduate Innovation Fund, China (Grant No. CXJJ2017057).
    [1]

    Chen X H, Yan L, Wu W, Meng S Y, Wu L A, Sun Z B, Wang C, Zhai G J 2017 Chin. Phys. B 26 60702

    [2]

    Lu X W, Li J Z, Chen H Y 2010 Chin. Phys. Lett. 27 104209

    [3]

    Bi G L, Xu Z J, Zhao J, Sun Q 2015 Acta Phys. Sin. 64 100701 (in Chinese)[毕国玲, 续志军, 赵健, 孙强 2015 物理学报 64 100701]

    [4]

    Li H, Wu W, Yang X M, Yan B Y, Liu K, Jeon G 2016 Acta Phys. Sin. 65 160701 (in Chinese)[李红, 吴炜, 杨晓敏, 严斌宇, 刘凯, Gwanggil Jeon 2016 物理学报 65 160701]

    [5]

    Sim K S, Tso C P, Tan Y Y 2007 Pattern Recogn. Lett. 28 1209

    [6]

    Sasi N M, Jayasree V K 2013 Engineering 5 326

    [7]

    Chen Q, Bai L H, Zhang B M 2003 J. Infrared Millim. Waves 22 428 (in Chinese)[陈钱, 柏连发, 张保民 2003 红外与毫米波学报 22 428]

    [8]

    Jobson D J, Rahman Z, Woodell G A 1997 IEEE Trans. Image Process. 6 451

    [9]

    Rahman Z, Jobson D J, Woodell G A 2002 International Conference on Image Processing Lausanne, Switzerland, September 19, 1996 p1003

    [10]

    Jobson D J, Rahman Z, Woodell G A 1997 IEEE Trans. Image Process. 6 965

    [11]

    Fu X, Zhuang P, Huang Y, Liao Y, Zhang X P, Ding X 2015 IEEE International Conference on Image Processing Quebec City, Canada, Septmber 27-30, 2014 p4572

    [12]

    He K, Sun J, Tang X 2013 IEEE Trans. Pattern Anal. 35 1397

    [13]

    Li Z, Zheng J, Zhu Z, Yao W, Wu S 2015 IEEE Trans. Image Process. 24 120

    [14]

    Li H P 2014 M. S. Thesis (Kunming: Yunnan University) (in Chinese)[李红平2014 硕士学位论文 (昆明: 云南大学)]

    [15]

    Durand F, Dorsey J 2002 Acm Trans. Graphic 21 257

    [16]

    He K, Sun J, Tang X 2011 IEEE Trans. Pattern Anal. 33 2341

    [17]

    Li H Y, Zhong M Z 2016 J. Kashgar Univ. 37 42 (in Chinese)[李海燕, 钟梦之 2016 喀什大学学报 37 42]

    [18]

    Fu X, Zeng D, Huang Y, Ding X, Zhang X P 2014 IEEE Global Conference on Signal and Information Processing Austin, TX, USA, December 3-5, 2013 p1085

    [19]

    Song R X, Li D, Wang X C 2017 J. Graphics 38 217 (in Chinese)[宋瑞霞, 李达, 王小春 2017 图学学报 38 217]

    [20]

    Ying Z, Li G, RenY, Wang R, Wang W 2017 Computer Analysis of Images and Patterns 17th International Conference Proceedings, Part II Ystad, Sweden, August 22-24, 2017 p36

    [21]

    Li M, Liu J, Yang W, Sun X, Guo Z 2018 IEEE Trans. Image Process. 27 2828

    [22]

    Ying Z, Li G, Ren Y, Wang R, Wang W 2017 IEEE International Conference on Computer Vision Workshop, IEEE Computer Society Venice, Italy, October 22-29, 2017 p3015

    [23]

    Fu X, Liao Y, Zeng D, Huang Y, Zhang X P, Ding X 2015 IEEE Trans. Image Process. 24 4965

    [24]

    Guo X, Li Y, Ling H 2017 IEEE Trans. Image Process. 26 982

    [25]

    Fu X, Zeng D, Huang Y, Liao Y, Ding X, Paisley J 2016 Signal Process. 129 82

    [26]

    Lu B P, Li Y J, Zheng Y M, Wang Y K 2017 J. Chin. Mini-Micro Comput. Syst. 38 625 (in Chinese) [芦碧波, 李玉静, 郑艳梅, 王玉琨 2017 小型微型计算机系统 38 625]

    [27]

    Reinhard E, Stark M, Shirley P, Ferwerda J 2002 Conference on Computer Graphics & Interactive Techniques San Antonio, Texas, USA, July 21-26, 2002 p267

    [28]

    Cai B, Xu X, Jia K, Qing C, Tao D 2016 IEEE Trans. Image Process. 25 5187

    [29]

    Berman D, Treibitz T, Avidan S 2016 IEEE Conference on Computer Vision and Pattern Recognition Las Vegas, NV, USA, June 27-30, 2016 p1674

    [30]

    Fu X, Huang Y, Zeng D, Zhang X P, Ding X 2014 IEEE International Workshop on Multimedia Signal Processing Jakarta, Indonesia, September 22-24, 2014 p1

    [31]

    Li W, Yi B, Huang T, Yao W, Peng H 2016 KSⅡ Trans. Internet Inf. 10 1846

    [32]

    Lee S 2007 IEEE Trans. Circ. Syst. Vid. 17 199

    [33]

    Chen X H, Wu W, Meng S Y, Li M Y 2014 Chin. Phys. B 23 90701

    [34]

    Ji D J, Qu G R, Hu C H, Liu B D, Jian J B, Guo X K 2017 Chin. Phys. B 26 60701

  • [1]

    Chen X H, Yan L, Wu W, Meng S Y, Wu L A, Sun Z B, Wang C, Zhai G J 2017 Chin. Phys. B 26 60702

    [2]

    Lu X W, Li J Z, Chen H Y 2010 Chin. Phys. Lett. 27 104209

    [3]

    Bi G L, Xu Z J, Zhao J, Sun Q 2015 Acta Phys. Sin. 64 100701 (in Chinese)[毕国玲, 续志军, 赵健, 孙强 2015 物理学报 64 100701]

    [4]

    Li H, Wu W, Yang X M, Yan B Y, Liu K, Jeon G 2016 Acta Phys. Sin. 65 160701 (in Chinese)[李红, 吴炜, 杨晓敏, 严斌宇, 刘凯, Gwanggil Jeon 2016 物理学报 65 160701]

    [5]

    Sim K S, Tso C P, Tan Y Y 2007 Pattern Recogn. Lett. 28 1209

    [6]

    Sasi N M, Jayasree V K 2013 Engineering 5 326

    [7]

    Chen Q, Bai L H, Zhang B M 2003 J. Infrared Millim. Waves 22 428 (in Chinese)[陈钱, 柏连发, 张保民 2003 红外与毫米波学报 22 428]

    [8]

    Jobson D J, Rahman Z, Woodell G A 1997 IEEE Trans. Image Process. 6 451

    [9]

    Rahman Z, Jobson D J, Woodell G A 2002 International Conference on Image Processing Lausanne, Switzerland, September 19, 1996 p1003

    [10]

    Jobson D J, Rahman Z, Woodell G A 1997 IEEE Trans. Image Process. 6 965

    [11]

    Fu X, Zhuang P, Huang Y, Liao Y, Zhang X P, Ding X 2015 IEEE International Conference on Image Processing Quebec City, Canada, Septmber 27-30, 2014 p4572

    [12]

    He K, Sun J, Tang X 2013 IEEE Trans. Pattern Anal. 35 1397

    [13]

    Li Z, Zheng J, Zhu Z, Yao W, Wu S 2015 IEEE Trans. Image Process. 24 120

    [14]

    Li H P 2014 M. S. Thesis (Kunming: Yunnan University) (in Chinese)[李红平2014 硕士学位论文 (昆明: 云南大学)]

    [15]

    Durand F, Dorsey J 2002 Acm Trans. Graphic 21 257

    [16]

    He K, Sun J, Tang X 2011 IEEE Trans. Pattern Anal. 33 2341

    [17]

    Li H Y, Zhong M Z 2016 J. Kashgar Univ. 37 42 (in Chinese)[李海燕, 钟梦之 2016 喀什大学学报 37 42]

    [18]

    Fu X, Zeng D, Huang Y, Ding X, Zhang X P 2014 IEEE Global Conference on Signal and Information Processing Austin, TX, USA, December 3-5, 2013 p1085

    [19]

    Song R X, Li D, Wang X C 2017 J. Graphics 38 217 (in Chinese)[宋瑞霞, 李达, 王小春 2017 图学学报 38 217]

    [20]

    Ying Z, Li G, RenY, Wang R, Wang W 2017 Computer Analysis of Images and Patterns 17th International Conference Proceedings, Part II Ystad, Sweden, August 22-24, 2017 p36

    [21]

    Li M, Liu J, Yang W, Sun X, Guo Z 2018 IEEE Trans. Image Process. 27 2828

    [22]

    Ying Z, Li G, Ren Y, Wang R, Wang W 2017 IEEE International Conference on Computer Vision Workshop, IEEE Computer Society Venice, Italy, October 22-29, 2017 p3015

    [23]

    Fu X, Liao Y, Zeng D, Huang Y, Zhang X P, Ding X 2015 IEEE Trans. Image Process. 24 4965

    [24]

    Guo X, Li Y, Ling H 2017 IEEE Trans. Image Process. 26 982

    [25]

    Fu X, Zeng D, Huang Y, Liao Y, Ding X, Paisley J 2016 Signal Process. 129 82

    [26]

    Lu B P, Li Y J, Zheng Y M, Wang Y K 2017 J. Chin. Mini-Micro Comput. Syst. 38 625 (in Chinese) [芦碧波, 李玉静, 郑艳梅, 王玉琨 2017 小型微型计算机系统 38 625]

    [27]

    Reinhard E, Stark M, Shirley P, Ferwerda J 2002 Conference on Computer Graphics & Interactive Techniques San Antonio, Texas, USA, July 21-26, 2002 p267

    [28]

    Cai B, Xu X, Jia K, Qing C, Tao D 2016 IEEE Trans. Image Process. 25 5187

    [29]

    Berman D, Treibitz T, Avidan S 2016 IEEE Conference on Computer Vision and Pattern Recognition Las Vegas, NV, USA, June 27-30, 2016 p1674

    [30]

    Fu X, Huang Y, Zeng D, Zhang X P, Ding X 2014 IEEE International Workshop on Multimedia Signal Processing Jakarta, Indonesia, September 22-24, 2014 p1

    [31]

    Li W, Yi B, Huang T, Yao W, Peng H 2016 KSⅡ Trans. Internet Inf. 10 1846

    [32]

    Lee S 2007 IEEE Trans. Circ. Syst. Vid. 17 199

    [33]

    Chen X H, Wu W, Meng S Y, Li M Y 2014 Chin. Phys. B 23 90701

    [34]

    Ji D J, Qu G R, Hu C H, Liu B D, Jian J B, Guo X K 2017 Chin. Phys. B 26 60701

  • [1] 张银胜, 童俊毅, 陈戈, 单梦姣, 王硕洋, 单慧琳. 基于多尺度特征增强的合成孔径光学图像复原. 物理学报, 2024, 73(6): 064203. doi: 10.7498/aps.73.20231761
    [2] 江碧怡, 周菲迟, 柴扬. 神经形态阻变器件在图像处理中的应用. 物理学报, 2022, 71(14): 148504. doi: 10.7498/aps.71.20220463
    [3] 吴晓娲, 秦四清, 薛雷, 杨百存, 张珂. 孕震断层锁固段累积损伤导致失稳的自组织-临界行为特征. 物理学报, 2018, 67(20): 206401. doi: 10.7498/aps.67.20180614
    [4] 才啟胜, 黄旻, 韩炜, 刘怡轩, 路向宁. 大孔径空间外差干涉光谱成像技术多谱段成像仿真. 物理学报, 2018, 67(23): 234205. doi: 10.7498/aps.67.20180943
    [5] 刘杰, 张建勋, 代煜. 基于多引导滤波的图像增强算法. 物理学报, 2018, 67(23): 238701. doi: 10.7498/aps.67.20181425
    [6] 李红, 吴炜, 杨晓敏, 严斌宇, 刘凯, Gwanggil Jeon. 基于主特征提取的Retinex多谱段图像增强. 物理学报, 2016, 65(16): 160701. doi: 10.7498/aps.65.160701
    [7] 易仕和, 陈植. 隔离段激波串流场特征的试验研究进展. 物理学报, 2015, 64(19): 199401. doi: 10.7498/aps.64.199401
    [8] 赵辽英, 吕步云, 厉小润, 陈淑涵. 基于尺度不变特征变换和区域互信息优化的多源遥感图像配准. 物理学报, 2015, 64(12): 124204. doi: 10.7498/aps.64.124204
    [9] 李鑫楠, 黄贺艳, 贾小宁, 马驷良. 基于指导滤波的图像盲复原算法. 物理学报, 2015, 64(13): 134202. doi: 10.7498/aps.64.134202
    [10] 毕国玲, 续志军, 赵建, 孙强. 基于照射_反射模型和有界运算的多谱段图像增强. 物理学报, 2015, 64(10): 100701. doi: 10.7498/aps.64.100701
    [11] 庞宇, 邓璐, 林金朝, 李章勇, 周前能, 李国权, 黄华伟, 张懿, 吴炜. 基于形态滤波的心电信号去除基线漂移方法. 物理学报, 2014, 63(9): 098701. doi: 10.7498/aps.63.098701
    [12] 文侨, 王凯歌, 邵永红, 屈军乐, 牛憨笨. 基于偏振滤波图像增强和动态散斑照明的宽场荧光层析显微镜. 物理学报, 2013, 62(3): 034203. doi: 10.7498/aps.62.034203
    [13] 秦秀娟, 邵光杰, 刘日平, 王文魁, 姚玉书, 孟惠民. 高性能ZnO纳米块体材料的制备及其拉曼光谱学特征. 物理学报, 2006, 55(7): 3760-3765. doi: 10.7498/aps.55.3760
    [14] 罗 林, 王 黎, 程卫东, 沈忙作. 天文图像多帧盲反卷积收敛性的增强方法. 物理学报, 2006, 55(12): 6708-6714. doi: 10.7498/aps.55.6708
    [15] 王 熠, 翟宏琛, 母国光. 基于形态矩阵的图像模糊匹配方法. 物理学报, 2005, 54(5): 1965-1968. doi: 10.7498/aps.54.1965
    [16] 刘海文, 孙晓玮, 李征帆, 钱 蓉, 周 旻. 基于分形特征和双层光子带隙结构的宽阻带低通滤波器. 物理学报, 2003, 52(12): 3082-3086. doi: 10.7498/aps.52.3082
    [17] 闵富红, 须文波, 徐振源. 用多凹槽滤波器控制混沌系统. 物理学报, 2002, 51(8): 1690-1695. doi: 10.7498/aps.51.1690
    [18] 李刘合, 张海泉, 崔旭明, 张彦华, 夏立芳, 马欣新, 孙跃. X射线光电子能谱辅助Raman光谱分析类金刚石碳膜的结构细节. 物理学报, 2001, 50(8): 1549-1554. doi: 10.7498/aps.50.1549
    [19] 蔡朝洪, 徐振源, 须文波. 利用凹槽滤波引导混沌系统到周期解. 物理学报, 2001, 50(10): 1846-1850. doi: 10.7498/aps.50.1846
    [20] 顾本源, 董碧珍, 郑师海, 杨国桢. 空间平移不变和角度受限下转动不变的特征识别与滤波器的设计. 物理学报, 1985, 34(6): 760-765. doi: 10.7498/aps.34.760
计量
  • 文章访问数:  8154
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-04
  • 修回日期:  2018-08-10
  • 刊出日期:  2018-11-05

/

返回文章
返回