搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于主特征提取的Retinex多谱段图像增强

李红 吴炜 杨晓敏 严斌宇 刘凯 Gwanggil Jeon

引用本文:
Citation:

基于主特征提取的Retinex多谱段图像增强

李红, 吴炜, 杨晓敏, 严斌宇, 刘凯, Gwanggil Jeon

Multispectral image enhancement based on Retinex by using structure extraction

Li Hong, Wu Wei, Yang Xiao-Min, Yan Bin-Yu, Liu Kai, Gwanggil Jeon
PDF
导出引用
  • 根据Retinex视觉模型中照射分量和反射分量的统计特性,融合多尺度主特征提取法、平台直方图算法、非局部均值滤波及局部细节增强算法可对多谱段图像进行有效增强. 首先利用多尺度主特征提取法估计照射分量,对照射分量进行平台直方图操作,增强全局对比度及图像主结构边缘细节;然后将原图与照射分量相除获取反射分量,对反射分量进行非局部均值滤波抑制噪声,再进行基于局部方差的局部细节增强;最后将增强后的照射分量与反射分量相乘,即为增强图像. 从主观和客观两方面,对X光图像、紫外图像、可见光图像、低照度可见光图像和红外图像实验结果的分析表明,本文算法能够有效地抑制图像噪声、增强图像对比度及细节、改善图像视觉效果,是一种通用有效的多谱段图像增强算法.
    Applications in industrial and scientific areas need high-quality multispectral images. However, because of various disadvantages, e.g., adverse environment of sensing, limited spectral bands, etc., multispectral images suffer low contrasts, low signal-noise-ratios, etc. As inputs of applications such as tracking, recognition and so on, multispectral images with low quality may cause those applications to fail. In this paper, aiming to meet practical requirements, we propose an algorithm of efficiently improving miultispectral images. The framework of the proposed method is as follows. According to Retinex theory, a multispectral image can be modeled as multiplicative combination of an illumination component and a reflection component. Typically, an illumination component is of low frequency and determines the dynamic range of pixel intensity, while a reflection component is of high frequency and determines the property of an image. Once we can successfully enhance both an illumination component and a reflection component, which is described later, respectively, we achieve the enhancement of a multispectral image by multiplying two enhanced components. First, we estimate the illumination component based on the principal structures extracted from the multispectral image on a multiple scale, i.e. on a low-level scale, middle-level scale and high-level scale, respectively. The mean value of the three principal structures is used as the estimation of an illumination component. Then the global structure contained in the illumination component, can be obtained by analyzing the corresponding information about its histogram, and is involved to enhance the global contrast and the edge details of the principal structure. Second, with the previously computed illumination component, we can easily derive the reflection component from the multispectral image in pixel-wise division operation. There are adequate image details as well as noise in the reflection component. We suppress the noise and keep the image details by using a non local mean filter. And then we enhance the image details by means of local variances. Finally, multiplying the enhanced illumination component by the filtered reflection component, we enhance the multispectral image. In order to verify the efficiency of our algorithm, experiments are conducted over multispectral image sets including X-ray images, ultraviolet images, well illuminated visible light images, poorly illuminated visible light image, and infrared images. The experimental results show that the proposed algorithm can efficiently remove halo artifacts, well suppress noise and obviously improve local details as well as global contrast. Compared with the state-of-the-art algorithms, the proposed method significantly enhances multispectral images both in vision and in objective analysis by means of information entropy and average gradient.
      通信作者: 吴炜, wuwei@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61271330,61411140248,61473198)和四川省科技支撑计划(批准号:2014GZ0005)资助的课题.
      Corresponding author: Wu Wei, wuwei@scu.edu.cn
    • Funds: The National Natural Science Foundation of China (Grant Nos. 61271330, 61411140248, 61473198) and the Science and Technology Plan of Sichuan Province, China (Grant No. 2014GZ0005).
    [1]

    Bi G L, Xu Z J, Zhao J, Sun Q 2015 Acta Phys. Sin. 64 100701 (in Chinese) [毕国玲, 续志军, 赵健, 孙强 2015 物理学报 64 100701]

    [2]

    Stark J A 2000 IEEE Trans. Image Process. 9 889

    [3]

    Zhao W D, Xu Z J, Zhao J, Zhao F, Han X Z 2014 Infrared Phys. Technol. 66 152

    [4]

    Wu C M 2013 Acta Electronica Sinica 41 598 (in Chinese) [吴成茂 2013 电子学报 41 598]

    [5]

    Tian X P, Cheng X, Wu C M, Liu Y B 2015 Journal of Xi’an University of Posts and Telecommunications 20 51 (in Chinese) [田小平, 程新, 吴成茂, 刘一博 2015 西安邮电大学学报 20 51]

    [6]

    Qi F, Li Y J, Zhang K 2008 Journal of China Ordeance 4 181

    [7]

    Song Q F, L X L, Cheng M X, Lu A J 2014 Electro-Optic Technology Application 29 39 (in Chinese) [宋庆峰, 吕绪良, 隋明序, 卢爱军 2014 光电技术应用 29 39]

    [8]

    Land E H 1986 National Academy Sciences 83 3078

    [9]

    Orsini G, Ramponi G, Carrai P, Federico R D 2003 National Academy Sciences 3 393

    [10]

    Wang Y C, Li S J, Huang L Q 2006 Optics and Precision Engineering 1 70 (in Chinese) [王彦臣, 李树杰, 黄廉卿 2006 光学精密工程 1 70]

    [11]

    Elad M 2005 Scale Space and PDE Methods in Computer Vision 3459 217

    [12]

    Zhao H Y, Xiao C B, Yu J, Dai Y 2014 Journal of Beijing University of Technology 40 404 (in Chinese) [赵宏宇, 肖创柏, 禹晶, 戴岩 2014 北京工业大学学报 40 404]

    [13]

    Yang L, Jiang J 2014 Computer Digital Engineering 42 879 (in Chinese) [杨龙, 姜军 2014 计算机与数字工程 42 879]

    [14]

    Wang B J, Liu S Q, Li Q, Zhou H X 2006 Scale Space and PDE Methods in Computer Vision 48 77

    [15]

    Lai R, Yang Y T, Wang B J, Zhou H X 2010 Opt. Commun. 283 4283

    [16]

    Buades A, Coll B, Morel J M 2005 IEEE Computer Vision and Pattern 38 60

    [17]

    Dimitri V D, Miche K 2009 IEEE Signal Processing Lett. 16 973

    [18]

    Singh S S, Singh T T, Devi H M, Sinam T 2012 Int. J. Comput. Appl. 47 31

    [19]

    Xu L, Yan Q, Xia Y, Jia J Y 2012 ACM Trans. Graphics 31 139

    [20]

    Wang Y Q 2013 Computer Technology and Development 23 63 (in Chinese) [王宇庆 2013 计算机技术与发展 23 63]

  • [1]

    Bi G L, Xu Z J, Zhao J, Sun Q 2015 Acta Phys. Sin. 64 100701 (in Chinese) [毕国玲, 续志军, 赵健, 孙强 2015 物理学报 64 100701]

    [2]

    Stark J A 2000 IEEE Trans. Image Process. 9 889

    [3]

    Zhao W D, Xu Z J, Zhao J, Zhao F, Han X Z 2014 Infrared Phys. Technol. 66 152

    [4]

    Wu C M 2013 Acta Electronica Sinica 41 598 (in Chinese) [吴成茂 2013 电子学报 41 598]

    [5]

    Tian X P, Cheng X, Wu C M, Liu Y B 2015 Journal of Xi’an University of Posts and Telecommunications 20 51 (in Chinese) [田小平, 程新, 吴成茂, 刘一博 2015 西安邮电大学学报 20 51]

    [6]

    Qi F, Li Y J, Zhang K 2008 Journal of China Ordeance 4 181

    [7]

    Song Q F, L X L, Cheng M X, Lu A J 2014 Electro-Optic Technology Application 29 39 (in Chinese) [宋庆峰, 吕绪良, 隋明序, 卢爱军 2014 光电技术应用 29 39]

    [8]

    Land E H 1986 National Academy Sciences 83 3078

    [9]

    Orsini G, Ramponi G, Carrai P, Federico R D 2003 National Academy Sciences 3 393

    [10]

    Wang Y C, Li S J, Huang L Q 2006 Optics and Precision Engineering 1 70 (in Chinese) [王彦臣, 李树杰, 黄廉卿 2006 光学精密工程 1 70]

    [11]

    Elad M 2005 Scale Space and PDE Methods in Computer Vision 3459 217

    [12]

    Zhao H Y, Xiao C B, Yu J, Dai Y 2014 Journal of Beijing University of Technology 40 404 (in Chinese) [赵宏宇, 肖创柏, 禹晶, 戴岩 2014 北京工业大学学报 40 404]

    [13]

    Yang L, Jiang J 2014 Computer Digital Engineering 42 879 (in Chinese) [杨龙, 姜军 2014 计算机与数字工程 42 879]

    [14]

    Wang B J, Liu S Q, Li Q, Zhou H X 2006 Scale Space and PDE Methods in Computer Vision 48 77

    [15]

    Lai R, Yang Y T, Wang B J, Zhou H X 2010 Opt. Commun. 283 4283

    [16]

    Buades A, Coll B, Morel J M 2005 IEEE Computer Vision and Pattern 38 60

    [17]

    Dimitri V D, Miche K 2009 IEEE Signal Processing Lett. 16 973

    [18]

    Singh S S, Singh T T, Devi H M, Sinam T 2012 Int. J. Comput. Appl. 47 31

    [19]

    Xu L, Yan Q, Xia Y, Jia J Y 2012 ACM Trans. Graphics 31 139

    [20]

    Wang Y Q 2013 Computer Technology and Development 23 63 (in Chinese) [王宇庆 2013 计算机技术与发展 23 63]

  • [1] 陈思, 张海洋, 靳发宏, 汪林, 赵长明. 运动目标的多维度微运动特征提取研究. 物理学报, 2024, 73(7): 074204. doi: 10.7498/aps.73.20231691
    [2] 张银胜, 童俊毅, 陈戈, 单梦姣, 王硕洋, 单慧琳. 基于多尺度特征增强的合成孔径光学图像复原. 物理学报, 2024, 73(6): 064203. doi: 10.7498/aps.73.20231761
    [3] 战庆亮, 葛耀君, 白春锦. 基于深度学习的流场时程特征提取模型. 物理学报, 2022, 71(7): 074701. doi: 10.7498/aps.71.20211373
    [4] 张航瑛, 王雪琦, 王华英, 曹良才. 基于明度分量的Retinex-Net图像增强改进方法. 物理学报, 2022, 71(11): 110701. doi: 10.7498/aps.71.20220099
    [5] 许子非, 缪维跑, 李春, 金江涛, 李蜀军. 流场非线性特征提取与混沌分析. 物理学报, 2020, 69(24): 249501. doi: 10.7498/aps.69.20200625
    [6] 才啟胜, 黄旻, 韩炜, 刘怡轩, 路向宁. 大孔径空间外差干涉光谱成像技术多谱段成像仿真. 物理学报, 2018, 67(23): 234205. doi: 10.7498/aps.67.20180943
    [7] 刘杰, 张建勋, 代煜. 基于多引导滤波的图像增强算法. 物理学报, 2018, 67(23): 238701. doi: 10.7498/aps.67.20181425
    [8] 王殿伟, 韩鹏飞, 范九伦, 刘颖, 许志杰, 王晶. 基于光照-反射成像模型和形态学操作的多谱段图像增强算法. 物理学报, 2018, 67(21): 210701. doi: 10.7498/aps.67.20181288
    [9] 赵辽英, 吕步云, 厉小润, 陈淑涵. 基于尺度不变特征变换和区域互信息优化的多源遥感图像配准. 物理学报, 2015, 64(12): 124204. doi: 10.7498/aps.64.124204
    [10] 李凯彦, 赵兴群, 孙小菡, 万遂人. 一种用于光纤链路振动信号模式识别的规整化复合特征提取方法. 物理学报, 2015, 64(5): 054304. doi: 10.7498/aps.64.054304
    [11] 孙成明, 赵飞, 袁艳. 基于光谱的天基空间点目标特征提取与识别. 物理学报, 2015, 64(3): 034202. doi: 10.7498/aps.64.034202
    [12] 毕国玲, 续志军, 赵建, 孙强. 基于照射_反射模型和有界运算的多谱段图像增强. 物理学报, 2015, 64(10): 100701. doi: 10.7498/aps.64.100701
    [13] 高鹏, 王超, 支亚, 李旸, 王立玢, 丛正. 铝合金焊缝电涡流磁场信号的非线性特征提取及分类方法研究. 物理学报, 2014, 63(13): 134103. doi: 10.7498/aps.63.134103
    [14] 李焜, 方世良, 安良. 基于频散特征的单水听器模式特征提取及距离深度估计研究. 物理学报, 2013, 62(9): 094303. doi: 10.7498/aps.62.094303
    [15] 祁浩, 王福豹, 邓宏. 基于无线传感器网络的地震信号特征提取方法研究. 物理学报, 2013, 62(10): 104301. doi: 10.7498/aps.62.104301
    [16] 郑安总, 冷永刚, 范胜波. 基于奇异值分解的随机共振特征提取研究. 物理学报, 2012, 61(21): 210503. doi: 10.7498/aps.61.210503
    [17] 刘辉, 杨俊安, 王一. 基于流形学习的声目标特征提取方法研究. 物理学报, 2011, 60(7): 074302. doi: 10.7498/aps.60.074302
    [18] 边洪瑞, 王江, 韩春晓, 邓斌, 魏熙乐, 车艳秋. 基于复杂度的针刺脑电信号特征提取. 物理学报, 2011, 60(11): 118701. doi: 10.7498/aps.60.118701
    [19] 韩春晓, 王江, 车艳秋, 邓斌, 郭义, 郭永明, 刘阳阳. 针刺足三里的脊髓背根神经电信号非线性特征提取. 物理学报, 2010, 59(8): 5880-5887. doi: 10.7498/aps.59.5880
    [20] 孟庆芳, 周卫东, 陈月辉, 彭玉华. 基于非线性预测效果的癫痫脑电信号的特征提取方法. 物理学报, 2010, 59(1): 123-130. doi: 10.7498/aps.59.123
计量
  • 文章访问数:  6046
  • PDF下载量:  452
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-16
  • 修回日期:  2016-06-04
  • 刊出日期:  2016-08-05

/

返回文章
返回