搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

运动目标的多维度微运动特征提取研究

陈思 张海洋 靳发宏 汪林 赵长明

引用本文:
Citation:

运动目标的多维度微运动特征提取研究

陈思, 张海洋, 靳发宏, 汪林, 赵长明

Research on multi-dimensional micro-motion feature extraction of moving targets

Chen Si, Zhang Hai-Yang, Jin Fa-Hong, Wang Lin, Zhao Chang-Ming
PDF
HTML
导出引用
  • 微多普勒特征提取作为一种常用的时频分析工具, 对微动目标特征的提取重构具有重要意义. 为了更好地研究多运动的微多普勒效应, 提出了一种运动姿态分类方法. 按照目标频移是否随时间变化可以将运动姿态分为频移时变运动和频移时不变运动. 频移时变运动包括平移、翻滚和振动. 针对这种运动应分析对比不同时间对应的瞬态频移, 频移时不变运动主要为旋转运动. 本文通过微多普勒效应理论结合电磁波频域模型, 实现3D运动目标微动特性提取的仿真建立目标, 分析不同环境条件例如晴天阴天、有无湍流对探测的影响, 为后续实验研究奠定理论基础. 开展基于收发同置系统的多特征运动目标的微多普勒频移探测实验, 实验结果表明, 不同目标位置上频移的幅度、正负性和谱线宽度旨在反演目标形状、运动姿态、运动方向和速度. 利用FFTshift函数对一维数据进行解调分析, 实现三维时间-频率-强度关系的研究. 本研究实现了对目标宏观形状特性的测量以及微观运动信息的提取, 为雷达探测和识别奠定基础.
    The micro-Doppler effect is a physical phenomenon generated by the micro-motion of objects and their components, which have a significant influence on improving radar detection and resolution capability and also enhancing the radar imaging and target recognition performance. The extraction of micro-Doppler frequency, as a commonly used time-frequency analysis tool, is of great significance in extracting and reconstructing the signal with micro-motion targets. The micro-motion characteristics for moving targets can be verified by using simulation through combining the theory of micro-Doppler effect with the frequency domain model of electromagnetic waves. The simulation research on the micro-motion characteristics of a three-dimensional target is conducted by using the finite element method. The influences of environmental conditions such as relative humidity, visibility, and the presence or absence of turbulence on echo intensity and time-frequency relationship are investigated theoretically. The simulation results indicate that parameters such as relative humidity and visibility, which affect the atmospheric attenuation coefficient, can reduce echo intensity and the period of time-frequency curve. By triggering off beam drift in the transmission path, turbulence can lead to “frequency shift deformation” of the time-frequency curve, degrading the extraction of target motion attitude. A motion attitude classification method is proposed in order to study the micro-Doppler effect better. According to whether the frequency shift changes with time, the motion attitude can be divided into frequency shift time-invariant motion and time-variant motion. Frequency shift time-variant motion includes translation, rolling and vibration. Vibration and rolling are motions that periodically change with time, requiring the comparison of instantaneous frequency shifts at any three times within a cycle. Translation is a time-variant motion with irregular frequency shifts over time, which involves studying instantaneous frequency shifts at any three times. Transient frequency shifts should be analyzed and compared at different times for these motions. The frequency shift time-invariant motion is mainly rotation obtained experimental results indicate that the amplitude, plus-minus, and spectral width of frequency shift at different positions are aimed at inverting the target shape, attitude, direction and velocity. Demodulating one-dimensional data obtained from the FFTshift function can obtain the time-frequency-intensity relationship. This multi-parameter analysis method is a multi-dimensional processing method widely used in the fields of radar, sonar, and communication. The above research is conductive to the measurement of target macroscopic shape properties and the extraction of microscopic motion information, which lays the foundation for radar detection and recognition.
      通信作者: 张海洋, ocean@bit.edu.cn
    • 基金项目: 北京理工大学研究生科研水平和创新能力提升专项计划(批准号: 2023YCXY025)资助的课题.
      Corresponding author: Zhang Hai-Yang, ocean@bit.edu.cn
    • Funds: Project supported by the Beijing University of Technology Graduate Research Level and Innovation Ability Improvement Special Plan, China (Grant No. 2023YCXY025).
    [1]

    郭力仁, 胡以华, 董骁, 李敏乐 2018 物理学报 67 150701Google Scholar

    Guo L R, Hu Y H, Dong X, Li M L 2018 Acta Phys. Sin. 67 150701Google Scholar

    [2]

    Peng J Q, Xu W F, Liang B, Wu A G 2018 IEEE Sens. J. 19 8Google Scholar

    [3]

    高飞, 南恒帅, 黄波, 汪丽, 李仕春, 王玉峰, 刘晶晶, 闫庆, 宋跃辉, 华灯鑫 2018 物理学报 67 030701Google Scholar

    Gao F, Nan H S, Huang B, Wang L, Li S C, Wang Y F, Liu J J, Yan Q, Song Y H, Hua D X 2018 Acta Phys. Sin. 67 030701Google Scholar

    [4]

    李艳辉, 吴振森, 宫彦军, 张耿, 王明军 2010 物理学报 59 6988Google Scholar

    Li Y H, Wu Z S, Gong Y J, Zhang G, Wang M J 2010 Acta Phys. Sin. 59 6988Google Scholar

    [5]

    Liu Y, Zhang Z, Burla M, Eggleton B J 2022 Laser Photonics Rev. 4 16Google Scholar

    [6]

    Bradley M, Sabatier J M 2012 J. Acoust. Soc. Am. 131 3Google Scholar

    [7]

    Thayaparan T, Stanković L, Djurović I 2008 J. Franklin. I 345 700Google Scholar

    [8]

    Anderson M G 2008 Ph. D. Dissertation (Austin: The university of Texas at Austin

    [9]

    Ji J Z, Jiang J X, Allann A A, Shu C, Huang P 2017 Optik 150 1Google Scholar

    [10]

    Terras R 1981 J. Conput. Phys. 39 233Google Scholar

    [11]

    Antar M M Y, Hendry A 1985 Electron. Lett. 21 22Google Scholar

    [12]

    Zhao Y C, Su Y 2021 IET. Microw. Antenna P. 15 7Google Scholar

    [13]

    Inomata H, Igarashi T 1975 Jpn. J. Appl. Phys. 14 11Google Scholar

    [14]

    Chen V C, Li F, Ho S S, Wechsler H 2006 IEEE T. Aero. Elec. Sys. 42 1Google Scholar

    [15]

    Chen V C 1997 Opt. Eng. 4 36

    [16]

    王童, 童创明, 李西敏, 李昌泽 2015 物理学报 64 210301Google Scholar

    Wang T, Tong C M, Li X M, Li C Z 2015 Acta Phys. Sin. 64 210301Google Scholar

    [17]

    Li T M, Wen B Y, Tian Y W, Wang S J, Yin Y K 2019 IEEE Access 7 101527Google Scholar

    [18]

    Chen S, Zhang H Y, Zhao C M, Chen H, Fan Y, Wang L 2022 Def. Technol. 28 146Google Scholar

    [19]

    Chen S, Zhang H Y, Jin F H, Zhao C M, Wang L 2023 Heliyon 9 e16728Google Scholar

    [20]

    Jia J F, Kim H K, Hielscher A H 2015 J. Quant. Spectrosc. Ra. 167 10Google Scholar

    [21]

    Abushagur A A G, Abbou F M, Abdullah M, Misran N 2011 Opt. Eng. 50 7

    [22]

    Cheng X, Zhang D Z, Li X, Li X T, Chen R J 2021 J. Phys. Conf. Ser. 1971 1Google Scholar

    [23]

    Kim J, Baik J 2004 Atmos. Environ. 38 19Google Scholar

    [24]

    陈燕 2009 气象与环境科学 32 4Google Scholar

    Chen Y 2009 Meteor. Environ. Sci. 32 4Google Scholar

    [25]

    冷长林 2007 博士学位论文 (天津: 天津大学)

    Leng C L 2007 Ph. D. Dissertation (Tianjin: Tianjin University

    [26]

    Philip G, Sammy W H, Thomson J A, Dale L B 2000 Proc. Spie. 4035 2000Google Scholar

  • 图 1  多运动锥体和入射光的初始位置示意图 (a)自旋1/平移/振动; (b)自旋2; (c)翻滚

    Fig. 1.  Schematic diagram of initial positions of multi-motion cones and incident light: (a) Rotation 1/translation/vibration; (b) rotation 2; (c) rolling.

    图 2  多运动锥体运动初始位置的被照射面元投影 (a)自旋1/平移/振动; (b)自旋2; (c)翻滚

    Fig. 2.  Illuminated projection planes of initial positions of multi-motion targets: (a) Rotation 1/translation/vibration; (b) rotation 2; (c) rolling.

    图 3  图2(a)中顺时针自旋1锥体位置①, ④, ⑤对应的频移

    Fig. 3.  Frequency shifts of the cone with clockwise Rotation 1 at positions ①, ④ and ⑤ in Fig. 2(a).

    图 4  振动锥体的时间-强度关系图

    Fig. 4.  Time-frequency relationship of a vibrating cone.

    图 5  不同环境条件下探测顺时针自旋1锥体目标回波强度分布及时间-频率关系

    Fig. 5.  Echo intensity distribution and the relationship of time and frequency of a cone with clockwise rotation 1 under different environmental conditions.

    图 6  运动目标微多普勒频移实验装置图

    Fig. 6.  Device for measuring the micro-Doppler frequency shift of moving targets.

    图 7  电动位移台

    Fig. 7.  Electric moving stages.

    图 8  自旋1锥体上位置的频移示意图 (a)—(c)顺时针自旋1锥体上位置①—⑤的频移; (d)—(f)逆时针自旋1锥体上位置①—⑤的频移

    Fig. 8.  Diagrams of micro-Doppler at different positions of the cone with rotation 1: (a)—(c) Frequency shift of a cone at positions ①—⑤ with the clockwise rotation 1; (d)—(f) frequency shift of a cone at positions ①—⑤ with the counterclockwise rotation 1.

    图 9  顺时针自旋2锥体上位置①—⑦的频移示意图

    Fig. 9.  Diagrams of frequency shift at different positions ①—⑦ of a cone with clockwise rotation 2.

    图 10  振动目标上图2(a)中位置①处一个周期内三个时刻对应的频移

    Fig. 10.  Frequency shift at three times in a cycle on position ① in Fig. 2 (a) of a vibrating target.

    图 11  翻滚目标不同位置的微多普勒频移图 (a)—(e)顺时针翻滚圆锥上位置①—⑤处的频移; (f)—(j)逆时针翻滚圆锥上位置①—⑤处的频移

    Fig. 11.  Diagrams of micro-Doppler frequency shift at different positions of rolling targets: (a)—(e) Frequency shifts at positions ①—⑤ of a clockwise rolling cone; (f)—(j) frequency shifts at positions ①—⑤ of a counterclockwise rolling cone.

    图 12  匀速平移圆锥1 s内的微多普勒频移曲线

    Fig. 12.  Curve of a translating cone with a uniform speed in 1 s.

    图 13  不同类型运动锥体的时间-频率-强度三维关系图 (a) 顺时针自旋1; (b)顺时针自旋2; (c)振动; (d)顺时针翻滚; (e)平移

    Fig. 13.  Three-dimensional diagram of time-frequency-intensity relationship on diverse moving cones: (a) Clockwise rotation 1; (b) clockwise rotation 2; (c) vibration; (d) clockwise rolling; (e) translation.

    表 1  不同位置上的频移和频谱宽度

    Table 1.  Frequency shift and spectrum width at different locations.

    物理意义 赋值 备注
    温度 298 K 实验室温度为25 ℃
    相对湿度 0.5 晴天
    0.8 阴天
    能见度 23 km 晴天
    12 km 阴天
    室内风速 ~0.1 m/s
    材料 空气
    欧拉角 (20°, 30°, 50°)
    光斑半径 0.2 cm
    下载: 导出CSV

    表 2  仿真中使用的大气湍流模型参数

    Table 2.  Parameters used in numerical simulations.

    参数Cε1Cε2Cμσkσε
    赋值1.441.920.0911.3
    下载: 导出CSV

    表 3  不同位置上的频移和频谱宽度

    Table 3.  Frequency shift and spectral width at different positions.

    位置 峰值
    /MHz
    正负性 谱线宽度
    /MHz
    注释
    0.112 正值 0.192 轴对称
    0.122 0.117
    ' –0.083 负值 0.123
    ' -0.095 0.060
    0.199 正值 0.100 轴对称
    –0.143 负值 0.145
    ' –0.088 负值 0.061
    ' 0.720 正值 0.057
    –0.012 约为 0 0.130 位于对称轴上
    0.002 0.117
    0.020 0.0017
    下载: 导出CSV
  • [1]

    郭力仁, 胡以华, 董骁, 李敏乐 2018 物理学报 67 150701Google Scholar

    Guo L R, Hu Y H, Dong X, Li M L 2018 Acta Phys. Sin. 67 150701Google Scholar

    [2]

    Peng J Q, Xu W F, Liang B, Wu A G 2018 IEEE Sens. J. 19 8Google Scholar

    [3]

    高飞, 南恒帅, 黄波, 汪丽, 李仕春, 王玉峰, 刘晶晶, 闫庆, 宋跃辉, 华灯鑫 2018 物理学报 67 030701Google Scholar

    Gao F, Nan H S, Huang B, Wang L, Li S C, Wang Y F, Liu J J, Yan Q, Song Y H, Hua D X 2018 Acta Phys. Sin. 67 030701Google Scholar

    [4]

    李艳辉, 吴振森, 宫彦军, 张耿, 王明军 2010 物理学报 59 6988Google Scholar

    Li Y H, Wu Z S, Gong Y J, Zhang G, Wang M J 2010 Acta Phys. Sin. 59 6988Google Scholar

    [5]

    Liu Y, Zhang Z, Burla M, Eggleton B J 2022 Laser Photonics Rev. 4 16Google Scholar

    [6]

    Bradley M, Sabatier J M 2012 J. Acoust. Soc. Am. 131 3Google Scholar

    [7]

    Thayaparan T, Stanković L, Djurović I 2008 J. Franklin. I 345 700Google Scholar

    [8]

    Anderson M G 2008 Ph. D. Dissertation (Austin: The university of Texas at Austin

    [9]

    Ji J Z, Jiang J X, Allann A A, Shu C, Huang P 2017 Optik 150 1Google Scholar

    [10]

    Terras R 1981 J. Conput. Phys. 39 233Google Scholar

    [11]

    Antar M M Y, Hendry A 1985 Electron. Lett. 21 22Google Scholar

    [12]

    Zhao Y C, Su Y 2021 IET. Microw. Antenna P. 15 7Google Scholar

    [13]

    Inomata H, Igarashi T 1975 Jpn. J. Appl. Phys. 14 11Google Scholar

    [14]

    Chen V C, Li F, Ho S S, Wechsler H 2006 IEEE T. Aero. Elec. Sys. 42 1Google Scholar

    [15]

    Chen V C 1997 Opt. Eng. 4 36

    [16]

    王童, 童创明, 李西敏, 李昌泽 2015 物理学报 64 210301Google Scholar

    Wang T, Tong C M, Li X M, Li C Z 2015 Acta Phys. Sin. 64 210301Google Scholar

    [17]

    Li T M, Wen B Y, Tian Y W, Wang S J, Yin Y K 2019 IEEE Access 7 101527Google Scholar

    [18]

    Chen S, Zhang H Y, Zhao C M, Chen H, Fan Y, Wang L 2022 Def. Technol. 28 146Google Scholar

    [19]

    Chen S, Zhang H Y, Jin F H, Zhao C M, Wang L 2023 Heliyon 9 e16728Google Scholar

    [20]

    Jia J F, Kim H K, Hielscher A H 2015 J. Quant. Spectrosc. Ra. 167 10Google Scholar

    [21]

    Abushagur A A G, Abbou F M, Abdullah M, Misran N 2011 Opt. Eng. 50 7

    [22]

    Cheng X, Zhang D Z, Li X, Li X T, Chen R J 2021 J. Phys. Conf. Ser. 1971 1Google Scholar

    [23]

    Kim J, Baik J 2004 Atmos. Environ. 38 19Google Scholar

    [24]

    陈燕 2009 气象与环境科学 32 4Google Scholar

    Chen Y 2009 Meteor. Environ. Sci. 32 4Google Scholar

    [25]

    冷长林 2007 博士学位论文 (天津: 天津大学)

    Leng C L 2007 Ph. D. Dissertation (Tianjin: Tianjin University

    [26]

    Philip G, Sammy W H, Thomson J A, Dale L B 2000 Proc. Spie. 4035 2000Google Scholar

  • [1] 印必还, 何姿, 丁大志. 基于旋转多普勒效应的自旋目标转速估计方法. 物理学报, 2023, 72(17): 174203. doi: 10.7498/aps.72.20230807
    [2] 宋强, 孙晓兵, 刘晓, 提汝芳, 黄红莲, 王昊. 基于偏振信息探究水下环境气泡群对目标成像的影响. 物理学报, 2021, 70(14): 144201. doi: 10.7498/aps.70.20202152
    [3] 徐艳, 王培光, 杨青, 董江涛. 时空相关多通道聚类的运动目标检测. 物理学报, 2019, 68(16): 164203. doi: 10.7498/aps.68.20190161
    [4] 郭力仁, 胡以华, 董骁, 李敏乐. 运动目标激光微多普勒效应平动补偿和微动参数估计. 物理学报, 2018, 67(15): 150701. doi: 10.7498/aps.67.20172754
    [5] 刘松, 罗春荣, 翟世龙, 陈怀军, 赵晓鹏. 负质量密度声学超材料的反常多普勒效应. 物理学报, 2017, 66(2): 024301. doi: 10.7498/aps.66.024301
    [6] 吴庚坤, 宋金宝, 樊伟. 畸形波电磁散射特性分析及其特征识别标识的研究. 物理学报, 2017, 66(13): 134302. doi: 10.7498/aps.66.134302
    [7] 孙成明, 赵飞, 袁艳. 基于光谱的天基空间点目标特征提取与识别. 物理学报, 2015, 64(3): 034202. doi: 10.7498/aps.64.034202
    [8] 江浩, 周杰, 菊池久和, 邵根富. 基于三维空间域移动通信统计信道的多普勒效应. 物理学报, 2014, 63(4): 048702. doi: 10.7498/aps.63.048702
    [9] 林旺生, 梁国龙, 王燕, 付进, 张光普. 运动目标辐射声场干涉结构映射域特征研究. 物理学报, 2014, 63(3): 034306. doi: 10.7498/aps.63.034306
    [10] 阳志强, 吴振森, 张耿, 巩蕾. 旋转粗糙目标微运动特征识别技术. 物理学报, 2014, 63(21): 210301. doi: 10.7498/aps.63.210301
    [11] 杨殿阁, 罗禹贡, 李兵, 李克强, 连小珉. 基于时域多普勒修正的运动声全息识别方法. 物理学报, 2010, 59(7): 4738-4747. doi: 10.7498/aps.59.4738
    [12] 王娜, 陈克安. 水下噪声音色属性回归模型及其在目标识别中的应用. 物理学报, 2010, 59(4): 2873-2881. doi: 10.7498/aps.59.2873
    [13] 李艳辉, 吴振森, 宫彦军, 张耿, 王明军. 目标激光脉冲一维距离成像研究. 物理学报, 2010, 59(10): 6988-6993. doi: 10.7498/aps.59.6988
    [14] 宫彦军, 吴振森. 转动圆柱和圆锥的激光距离多普勒像分析模型. 物理学报, 2009, 58(9): 6227-6235. doi: 10.7498/aps.58.6227
    [15] 罗诗裕, 谭永明, 邵明珠, 韦洛霞, 邓立虎. 沟道效应的运动阻尼与系统走向混沌的临界特征. 物理学报, 2004, 53(4): 1157-1161. doi: 10.7498/aps.53.1157
    [16] 陆明珠, 万明习, 施雨, 宋延淳. 多阵元高强度聚焦超声多目标控制方法研究. 物理学报, 2002, 51(4): 928-934. doi: 10.7498/aps.51.928
    [17] 郑肇本, 黄曾旸, 汪德昭. 用极点方法识别水下目标. 物理学报, 1984, 33(4): 538-546. doi: 10.7498/aps.33.538
    [18] 刘济林, 戴建华, 张洪钧. 实现光学多特征图形识别的一种方法. 物理学报, 1982, 31(4): 437-445. doi: 10.7498/aps.31.437
    [19] 蔡伟, 葛森林, 吴自勤. 纯元素厚试样的标识X射线强度比. 物理学报, 1981, 30(7): 895-907. doi: 10.7498/aps.30.895
    [20] 李福利. 用负温度高能离子束的相对论多普勒效应实现从红外到X射线连续调谐激光器. 物理学报, 1980, 29(4): 429-438. doi: 10.7498/aps.29.429
计量
  • 文章访问数:  2016
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-23
  • 修回日期:  2023-12-14
  • 上网日期:  2024-02-02
  • 刊出日期:  2024-04-05

/

返回文章
返回