搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时空相关多通道聚类的运动目标检测

徐艳 王培光 杨青 董江涛

引用本文:
Citation:

时空相关多通道聚类的运动目标检测

徐艳, 王培光, 杨青, 董江涛

Moving target detection algorithm based on spatiotemporal correlation multi-channel clustering

Xu Yan, Wang Pei-Guang, Yang Qing, Dong Jiang-Tao
PDF
HTML
导出引用
  • 针对某些光照变化、噪声不稳定等多模态场景不适合离线训练背景模型来提取目标信息的问题, 在基于混合高斯的背景建模的基础上, 利用帧间差分与邻域相似性实现模型初始参数的选取; 提出将随机子采样与邻域空间传播理论相结合改进参数更新过程; 在时间维度上建立观测向量, 实现模型参数的优化, 加快模型收敛速度; 并将颜色信息和梯度相融合实现基于多特征的多通道背景模型的建立, 采用背景点的随机采样策略简化多通道模型建立的计算量, 最终实现复杂环境下的运动目标的检测. 实验表明, 算法在抑制鬼影、动态背景和遮挡等方面有良好的检测性能, 且执行效率能够满足实时计算的需求.
    In the process of tracking target, certain multi-modal background scenes are not suitable for the off-line training model, and moving target detection is affected as background in the current video environment is mostly multi-modal scene with much noise, and the characters of moving targets irregularly change, which,therefore, requires a more stable and robust moving target detection algorithm. To solve this problem, taking advantage of spatiotemporal relationship learning, the mixed Gaussian model (GMM) is improved in three aspects.First, the initialization method combining five-frame difference and intra-frame neighborhood average is proposed to obtain the initial parameters of the mixed Gaussian model. The five-frame difference method is introduced to obtain the initial parameters of the model, so that the background model is closer to the real scene. The intra-frame neighborhood average value is introduced, and an accumulation matrix CA is proposed to record the number of neighboring pixel points, then to enhance the information relevant to the neighborhood. This process can reduce the discontinuity of the target. Second, the calculation method of the neighborhood correlation is introduced to update the parameter of Gaussian model. Since the single pixel feature is related to the neighborhood random correlation, the random subsampling technology and neighborhood spatial propagation theory are combined together, and the execution efficiency is taken into account to simplify the process of updating model. To speed up the model convergence, an observation vector is built in the time dimension to optimize the model parameters, and the weight ω is gained based on the posterior probability. Then, the color-gradient method incooperated with the color HSI space and gradient information is adopted in this paper to complete the multi-channel Gaussian mixture model. The initial and the updated parameters of the Gaussian model in each channel can be acquired via the above steps. To simplify the computation of three channels, the random sampling of background pixels is introduced. Finally the detection of moving targets in complex environments is realized. The experiments show that the proposed algorithm has a great improvement in suppressing the influence of complex background and detecting target integrity, and the influence of the moving target in the initial stage is eliminated.
      通信作者: 王培光, pgwang@hbu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11771115)资助的课题.
      Corresponding author: Wang Pei-Guang, pgwang@hbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11771115).
    [1]

    Barron J L, Fleet D J, Beauchemin S S 1994 Computer Vision and Pattern Recognition Manufactured, Netherlands, February, 1994 p43

    [2]

    赖丽君, 徐智勇, 张栩铫 2016 红外与激光工程 45 273

    Lai L J, Xu Z Y, Zhang X Y 2016 Infrared and Laser Engineering 45 273

    [3]

    崔智高, 王华, 李艾华 2017 物理学报 66 084203Google Scholar

    Cui Z G, Wang H, Li A H 2017 Acta Phys. Sin. 66 084203Google Scholar

    [4]

    Li W, Yao J G, Dong T Z, Li H 2016 International Congress on Image & Signal Processing Shenyang, China October 14—16, 2015 p969

    [5]

    Staffer C, Grimson W L 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Fort Collins, Colorado, June 23—25, 1999 p2246

    [6]

    Wren C R, Azarbayejani A, Darrell T, Pentland P A 1997 IEEE Transactions on Pattern Analysis and Machine Intelligence Washington, DC, USA 1997 p780

    [7]

    赵旭东, 刘鹏, 唐降龙 2011 自动化学报 37 915

    Zhao X D, Liu P, Tang J L 2011 Acta Automatic Sinica 37 915

    [8]

    Thierry B, Baf F E, Vachon B 2008 Recent Patents on Computer Science 1 219Google Scholar

    [9]

    Kaewtrakulpong P, Bowden R 2002 Kluwer Academic Publishers 135

    [10]

    Kang K, Cao Y, Zhang J, Wang Z F 2016 Multimedia Tools & Applications 75 1443

    [11]

    李晓瑜, 马大中, 付英杰 2018 吉林大学学报(信息科学版) 36 61

    Li X Y, Ma D Z, Fu Y J 2018 Journal of Jilin University (Information Science Edition) 36 61

    [12]

    朱文杰, 王广龙, 田杰, 乔中涛, 高凤岐 2018 北京理工大学学报 38 165

    Zhu W J, Wang G L, Tian J, Qiao Z T, Gao F Q 2018 Journal of Beijing Institute of Technology 38 165

    [13]

    Chen Y Y, Wang J Q, Lu H Q 2015 IEEE International Conference on Multimedia and Expo Turin, Italy, June 2 9

    [14]

    Jeon M, Noh S, Noh S J, Jeon M 2012 Asian Conference on Computer Vision Daejeon, Korea, November 05—09, 2012 p493

    [15]

    Choi M, Sweetman B 2013 Structural Health Monitoring 9 13

    [16]

    Barnich O, Droogenbroeck M V 2011 IEEE Trans. Image Process. 20 1709Google Scholar

    [17]

    徐艳, 董江涛, 王少华 2010 物理学报 59 7535Google Scholar

    Xu Y, Dong J T, Wang S H 2010 Acta Phys. Sin. 59 7535Google Scholar

    [18]

    Maha M A, Shedeed H A, Hussein A S 2010 International Conference on Image Processing Hong Kong September 26—29, 2010 p3453

    [19]

    李艳荻, 徐熙平, 陈江, 王鹤程 2017 仪器仪表学报 38 445

    Li Y D, Xu X P, Chen J, Wang H C 2017 Chinese Journal of Scientific Instrument 38 445

    [20]

    Martin D, Fahad S K, Michael F, Weijer J V D 2014 IEEE Conference on Computer Vision and Pattern Recognition Columbus, USA, June 23—28, 2014 p1090

    [21]

    Jiang Y S, Ma J W 2015 IEEE Conference on Computer Vision and Pattern Recognition Boston, USA, June 7—12, 2015 p240

    [22]

    Cuevas C, Yáñez E M, García N 2016 Comput. Vision and Image Understanding 152 p103Google Scholar

    [23]

    Goyette N, Pierre M J, Porikli F, Konrad J, Ishwar P 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops Providence, Rhode Island, June 16—21, 2012 p1

  • 图 1  t时刻滑动窗口N内的图像序列

    Fig. 1.  The image sequence in the sliding window N at time t

    图 2  模型参数更新流程

    Fig. 2.  Model parameter update process.

    图 3  算法执行效率对比

    Fig. 3.  Algorithm execution efficiency comparison.

    图 4  算法精准度和准确率验证 (a)、(c) 精准度; (b)、(d) 准确率

    Fig. 4.  The accuracy and accuracy of the algorithm verify the results: (a)、(c) precision; (b)、(d) accuracy.

    图 5  O_CL_01数据集第161帧的处理结果 (a) 原始图像; (b) 标注真值; (c) GMM; (d) RGB_GMM; (e) ViBe; (f) HSG_GMM

    Fig. 5.  The result of the frame 161 in O_CL_01 data set: (a) Original image; (b) true Value image; (c) GMM result; (d) RGB_GMM result; (e) ViBe result; (f) HSG_GMM result.

    图 6  初始视频中存在动目标的静态背景检验结果 (a)原始图像; (b)GMM算法结果; (c) RGB-GMM结果; (d) ViBe结果; (e) HSG-GMM结果

    Fig. 6.  Detection result of moving target in initial video in static background: (a) Initial image; (b) GMM result; (c) RGB-GMM result; (d) ViBe result; (e) HSG-GMM result.

    图 7  动态背景环境中的运动目标检测 (a) 原始图像;(b) GMM; (c) RGB-GMM; (d) ViBe; (e) HSG-GMM

    Fig. 7.  Moving target detection in dynamic background environment: (a) Initial image;(b) GMM; (c) RGB-GMM; (d) ViBe; (e) HSG-GMM.

  • [1]

    Barron J L, Fleet D J, Beauchemin S S 1994 Computer Vision and Pattern Recognition Manufactured, Netherlands, February, 1994 p43

    [2]

    赖丽君, 徐智勇, 张栩铫 2016 红外与激光工程 45 273

    Lai L J, Xu Z Y, Zhang X Y 2016 Infrared and Laser Engineering 45 273

    [3]

    崔智高, 王华, 李艾华 2017 物理学报 66 084203Google Scholar

    Cui Z G, Wang H, Li A H 2017 Acta Phys. Sin. 66 084203Google Scholar

    [4]

    Li W, Yao J G, Dong T Z, Li H 2016 International Congress on Image & Signal Processing Shenyang, China October 14—16, 2015 p969

    [5]

    Staffer C, Grimson W L 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Fort Collins, Colorado, June 23—25, 1999 p2246

    [6]

    Wren C R, Azarbayejani A, Darrell T, Pentland P A 1997 IEEE Transactions on Pattern Analysis and Machine Intelligence Washington, DC, USA 1997 p780

    [7]

    赵旭东, 刘鹏, 唐降龙 2011 自动化学报 37 915

    Zhao X D, Liu P, Tang J L 2011 Acta Automatic Sinica 37 915

    [8]

    Thierry B, Baf F E, Vachon B 2008 Recent Patents on Computer Science 1 219Google Scholar

    [9]

    Kaewtrakulpong P, Bowden R 2002 Kluwer Academic Publishers 135

    [10]

    Kang K, Cao Y, Zhang J, Wang Z F 2016 Multimedia Tools & Applications 75 1443

    [11]

    李晓瑜, 马大中, 付英杰 2018 吉林大学学报(信息科学版) 36 61

    Li X Y, Ma D Z, Fu Y J 2018 Journal of Jilin University (Information Science Edition) 36 61

    [12]

    朱文杰, 王广龙, 田杰, 乔中涛, 高凤岐 2018 北京理工大学学报 38 165

    Zhu W J, Wang G L, Tian J, Qiao Z T, Gao F Q 2018 Journal of Beijing Institute of Technology 38 165

    [13]

    Chen Y Y, Wang J Q, Lu H Q 2015 IEEE International Conference on Multimedia and Expo Turin, Italy, June 2 9

    [14]

    Jeon M, Noh S, Noh S J, Jeon M 2012 Asian Conference on Computer Vision Daejeon, Korea, November 05—09, 2012 p493

    [15]

    Choi M, Sweetman B 2013 Structural Health Monitoring 9 13

    [16]

    Barnich O, Droogenbroeck M V 2011 IEEE Trans. Image Process. 20 1709Google Scholar

    [17]

    徐艳, 董江涛, 王少华 2010 物理学报 59 7535Google Scholar

    Xu Y, Dong J T, Wang S H 2010 Acta Phys. Sin. 59 7535Google Scholar

    [18]

    Maha M A, Shedeed H A, Hussein A S 2010 International Conference on Image Processing Hong Kong September 26—29, 2010 p3453

    [19]

    李艳荻, 徐熙平, 陈江, 王鹤程 2017 仪器仪表学报 38 445

    Li Y D, Xu X P, Chen J, Wang H C 2017 Chinese Journal of Scientific Instrument 38 445

    [20]

    Martin D, Fahad S K, Michael F, Weijer J V D 2014 IEEE Conference on Computer Vision and Pattern Recognition Columbus, USA, June 23—28, 2014 p1090

    [21]

    Jiang Y S, Ma J W 2015 IEEE Conference on Computer Vision and Pattern Recognition Boston, USA, June 7—12, 2015 p240

    [22]

    Cuevas C, Yáñez E M, García N 2016 Comput. Vision and Image Understanding 152 p103Google Scholar

    [23]

    Goyette N, Pierre M J, Porikli F, Konrad J, Ishwar P 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops Providence, Rhode Island, June 16—21, 2012 p1

  • [1] 李惟嘉, 申晓红, 李亚安. 一种无偏差的多通道多尺度样本熵算法. 物理学报, 2024, 73(11): 110502. doi: 10.7498/aps.73.20231133
    [2] 何瑞辉, 张海峰, 王欢, 马闯. 基于高斯混合模型的无向网络重构. 物理学报, 2024, 73(17): 178901. doi: 10.7498/aps.73.20240552
    [3] 覃俭. 光源相位噪声对高斯玻色采样的影响. 物理学报, 2023, 72(5): 050302. doi: 10.7498/aps.72.20221766
    [4] 汪韧, 郭静波, 惠俊鹏, 王泽, 刘红军, 许元男, 刘韵佛. 基于卷积高斯混合模型的统计压缩感知. 物理学报, 2019, 68(18): 180701. doi: 10.7498/aps.68.20190414
    [5] 夏茂鹏, 李健军, 高冬阳, 胡友勃, 盛文阳, 庞伟伟, 郑小兵. 基于相关光子多模式相关性的InSb模拟探测器定标方法. 物理学报, 2015, 64(24): 240601. doi: 10.7498/aps.64.240601
    [6] 郑仕链, 杨小牛, 赵知劲. 用于随机解调器压缩采样的重构判定方法. 物理学报, 2014, 63(22): 228401. doi: 10.7498/aps.63.228401
    [7] 张永升, 邱阳, 张朝祥, 李华, 张树林, 王永良, 徐小峰, 丁红胜, 孔祥燕. 多通道心磁系统标定方法研究. 物理学报, 2014, 63(22): 228501. doi: 10.7498/aps.63.228501
    [8] 程聪, 吴福根, 张欣, 姚源卫. 基于局域共振单元实现声子晶体低频多通道滤波. 物理学报, 2014, 63(2): 024301. doi: 10.7498/aps.63.024301
    [9] 闫寒, 张文明, 胡开明, 刘岩, 孟光. 随机粗糙微通道内流动特性研究. 物理学报, 2013, 62(17): 174701. doi: 10.7498/aps.62.174701
    [10] 周军, 袁好, 宋军. 相位扩散通道中密度算符相关态的时间演化. 物理学报, 2012, 61(3): 030302. doi: 10.7498/aps.61.030302
    [11] 李洪伟, 周云龙, 刘旭, 孙斌. 基于随机子空间结合稳定图的气液两相流型分析. 物理学报, 2012, 61(3): 030508. doi: 10.7498/aps.61.030508
    [12] 赵生妹, 刘静. 量子多址高斯信道的信息容量研究. 物理学报, 2010, 59(2): 771-777. doi: 10.7498/aps.59.771
    [13] 刘曼, 程传福, 宋洪胜, 滕树云, 刘桂媛. 高斯相关随机表面光散射散斑场相位奇异及其特性的理论研究. 物理学报, 2009, 58(8): 5376-5384. doi: 10.7498/aps.58.5376
    [14] 陈翼男, 金伟其, 赵磊, 赵琳. 基于Poisson-Markov分布最大后验概率的多通道超分辨率盲复原算法. 物理学报, 2009, 58(1): 264-271. doi: 10.7498/aps.58.264
    [15] 张广军, 徐健学. 非线性动力系统分岔点邻域内随机共振的特性. 物理学报, 2005, 54(2): 557-564. doi: 10.7498/aps.54.557
    [16] 张 彬, 吕百达. 多模激光的模相关和相干模表示. 物理学报, 1999, 48(1): 58-64. doi: 10.7498/aps.48.58
    [17] 程传福, 亓东平, 刘德丽, 滕树云. 高斯相关随机表面及其光散射散斑场的模拟产生和光强概率分析. 物理学报, 1999, 48(9): 1635-1643. doi: 10.7498/aps.48.1635
    [18] 刘同江, 张志杰, 赵伊君. 铍原子基态交换-相关能的多体理论计算. 物理学报, 1988, 37(2): 254-260. doi: 10.7498/aps.37.254
    [19] 陈赓华, 赵忠贤. 一维多通道正常金属结构的透射几率. 物理学报, 1987, 36(6): 725-735. doi: 10.7498/aps.36.725
    [20] 李家明. 双电子复合逆过程的多通道理论. 物理学报, 1983, 32(1): 84-91. doi: 10.7498/aps.32.84
计量
  • 文章访问数:  7055
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-28
  • 修回日期:  2019-05-20
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-20

/

返回文章
返回