-
利用基于参量下转换产生的相关光子可以实现无溯源的绝对定标. 将该方法推广应用于模拟探测器定标的过程中, 获取两路模拟光电流信号的有效相关信息是主要难点. 在相关光子的多模式相关性理论模型的基础上, 提出了一种新的光电流处理方案. 通过将某一时刻采集到的光电流所包含的电荷量转换为等效光子计数, 采用双光路平衡探测和双通道数据波动校正的技术思路, 开展了红外模拟探测器量子效率定标验证实验研究. 利用532 nm单波长激光器为抽运源、PPLN晶体为非线性晶体, 在25 ℃工作温度下获取了631和3390 nm的相关光子对, 定标了InSb红外模拟探测器在3390 nm处的绝对功率响应度. 结果表明, 对InSb模拟探测器的合成不确定度为7.785%. 根据量子效率与绝对功率响应度之间的函数关系, 定标结果与国内计量单位的校准结果的相对偏差为3.6%. 利用多模式相关性在模拟信号下实现红外模拟探测器的绝对功率响应度定标在国际上暂无此方面的报道, 该方法验证了应用多模式相关性理论开展模拟探测器定标方法的可行性, 对于探索基于相关光子的定标技术和拓宽辐射定标应用领域具有重要意义.Absolute calibration can be realized by means of correlation photon which is generated by the parametric down conversion. The main difficulty lies in obtaining correlation information about photon flux when this method is applied to analog detector calibration process. A novel method of processing the photocurrent on the basis of detecting multimode spatial correlation is proposed. By converting the charge quantity contained in the photocurrent detected in a certain time interval into the photon counting, and by using double channels balance detection and measuring mean photon counts of each model to correct the dual channels fluctuations, the high accuracy calibration of quantum efficiency can be achieved. The photon fluxes of two channels are balanced by inserting an adjustable attenuator in one optical path. The cross section of pumping beam is comparable to the detection area to ensure three-wave colinearity, and the coherent area of the correlation photons is obtained by measuring pump beam waist and lens focus length. With the known detection area, coherence time and coherence area, the average photon number of each mode is computed. This process should be performed under the average photon number of each mode as a reference which could be used for the proportional scaling of equivalent photons of two channels. Based on this new approach, the absolute power responsivity of an InSb detector is calibrated at 3390 nm with correlated photon pairs at 631 and 3390 nm. The calibration procedure and experiments are described and the uncertainty of this method is analyzed. The results show a relative combination uncertainty of about 7.785% for this calibration method, which agrees well with the result independently obtained in the national photoelectronic metrology laboratory within a relative difference of about 3.6%. This result verifies that the quantum efficiency of an analog detector can be calibrated by the correlated photon method, which has potential applications in highly accurate radiometric calibration without external standards.
[1] Zheng X B, Wu H Y, Zhang J P 2000 Chin. Sci. Bull. 45 2009
[2] Zheng X B, Wu H Y, Zhang J P 2001 Acta Opt. Sin. 21 749 (in Chinese) [郑小兵, 吴浩宇, 章骏平 2001 光学学报 21 749]
[3] Hu L Y, Wang S, Zhang Z M 2012 Chin. Phys. B 21 064207
[4] Xu X F, Zhu S Q 2009 Chin. Phys. B 18 1512
[5] Pan G X, Xiao R J, Zhou L 2013 Chin. Phys. B 22 010307
[6] Xiang G Y, Guo G C 2013 Chin. Phys. B 22 110601
[7] Klyshko D N 1980 Sov. Quantum. Electron. 10 1112
[8] Brida G, Castelletto S, Novero C, 1999 J. Opt. Soc. Am. B 16 1623
[9] Li J J, Zheng X B, Lu Y J 2008 Chin. Opt. Lett. 6 472
[10] L L, Zhang Y C, Lin Y D 2012 Acta Opt. Sin. 32 0112004 (in Chinese) [吕亮, 张寅超, 林延东 2012 光学学报 32 0112004]
[11] Odate S, Yoshizawa A, Fukuda D 2007 Opt. Lett. 32 3176
[12] Chang J, Wu L A 2003 Acta Phys. Sin. 52 1132 (in Chinese) [常君, 吴令安 2003 物理学报 52 1132]
[13] Brida G, Genovese M 2006 Opt. Soc. Am. B 23 2158
[14] Brida G, Chekhova M, Genovese M, Ruo-Berchera I 2008 Opt. Express 16 12550
[15] Brida G, Chekhova M, Genovese M, Rastello M L, Ruo B I 2009 J. Mod. Opt. 56 401
[16] Brida G, Chekhova M, Genovese M 2007 Instrumentation and Measurement 56 275
[17] Berchera I R 2009 Adv. Sci. Lett. 2
[18] Brida G, Degiovanni I P 2010 Opt. Express 18 20572
[19] Lindenthal M, Kofler J 2006 Appl. Opt. 45 6059
[20] Perina J, Ondrej, Haderka J 2012 Opt. Lett. 37 2075
[21] Meda A, Ruo-Berchera I, Degiovanni I P 2014 Appl. Phys. Lett. 105 10113
[22] Fei Y T 2004 Error Theory and Data Processing (Beijing: China Machine Press) pp82-88 (in Chinses) [费页泰 2004 误差理论与数据处理(北京: 机械工业出版社) 第82–88页]
-
[1] Zheng X B, Wu H Y, Zhang J P 2000 Chin. Sci. Bull. 45 2009
[2] Zheng X B, Wu H Y, Zhang J P 2001 Acta Opt. Sin. 21 749 (in Chinese) [郑小兵, 吴浩宇, 章骏平 2001 光学学报 21 749]
[3] Hu L Y, Wang S, Zhang Z M 2012 Chin. Phys. B 21 064207
[4] Xu X F, Zhu S Q 2009 Chin. Phys. B 18 1512
[5] Pan G X, Xiao R J, Zhou L 2013 Chin. Phys. B 22 010307
[6] Xiang G Y, Guo G C 2013 Chin. Phys. B 22 110601
[7] Klyshko D N 1980 Sov. Quantum. Electron. 10 1112
[8] Brida G, Castelletto S, Novero C, 1999 J. Opt. Soc. Am. B 16 1623
[9] Li J J, Zheng X B, Lu Y J 2008 Chin. Opt. Lett. 6 472
[10] L L, Zhang Y C, Lin Y D 2012 Acta Opt. Sin. 32 0112004 (in Chinese) [吕亮, 张寅超, 林延东 2012 光学学报 32 0112004]
[11] Odate S, Yoshizawa A, Fukuda D 2007 Opt. Lett. 32 3176
[12] Chang J, Wu L A 2003 Acta Phys. Sin. 52 1132 (in Chinese) [常君, 吴令安 2003 物理学报 52 1132]
[13] Brida G, Genovese M 2006 Opt. Soc. Am. B 23 2158
[14] Brida G, Chekhova M, Genovese M, Ruo-Berchera I 2008 Opt. Express 16 12550
[15] Brida G, Chekhova M, Genovese M, Rastello M L, Ruo B I 2009 J. Mod. Opt. 56 401
[16] Brida G, Chekhova M, Genovese M 2007 Instrumentation and Measurement 56 275
[17] Berchera I R 2009 Adv. Sci. Lett. 2
[18] Brida G, Degiovanni I P 2010 Opt. Express 18 20572
[19] Lindenthal M, Kofler J 2006 Appl. Opt. 45 6059
[20] Perina J, Ondrej, Haderka J 2012 Opt. Lett. 37 2075
[21] Meda A, Ruo-Berchera I, Degiovanni I P 2014 Appl. Phys. Lett. 105 10113
[22] Fei Y T 2004 Error Theory and Data Processing (Beijing: China Machine Press) pp82-88 (in Chinses) [费页泰 2004 误差理论与数据处理(北京: 机械工业出版社) 第82–88页]
计量
- 文章访问数: 5526
- PDF下载量: 155
- 被引次数: 0