搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

间接型光谱成像仪相对光谱响应函数标定方法

李潇潇 李娟 柏财勋 畅晨光 郝雄波 文镇清 王鹏冲 冯玉涛

引用本文:
Citation:

间接型光谱成像仪相对光谱响应函数标定方法

李潇潇, 李娟, 柏财勋, 畅晨光, 郝雄波, 文镇清, 王鹏冲, 冯玉涛

Calibration method of relative spectral response function of indirect imaging spectrometer

Li Xiao-Xiao, Li Juan, Bai Cai-Xun, Chang Chen-Guang, Hao Xiong-Bo, Wen Zhen-Qing, Wang Peng-Chong, Feng Yu-Tao
PDF
HTML
导出引用
  • 间接型光谱成像仪通常采用面阵探测器作为光电转换器件, 探测器像元间光谱响应的不一致性会导致采集到的目标光谱失真, 所以标定和修正像元间光谱响应的不一致性是提升间接型光谱成像仪光谱辐射测量精度的重要手段. 本文以干涉光谱成像仪为例, 分析了系统像元间相对光谱响应不一致对目标光谱辐射测量准确性的影响, 提出了基于傅里叶变换调制定标源的间接型光谱成像仪全系统相对光谱响应函数测量方法, 并建立了相对光谱响应函数标定的数理模型. 仿真分析结果表明, 理想无噪声时, 像元间1%的相对光谱响应不一致性会对复原光谱造成1.02%的相对误差, 经过相对光谱响应校正后, 不同行复原光谱的相对误差降至0.08%. 最后, 仿真分析了相对光谱响应不一致性在不同光谱信噪比下的校正效果. 该方法可提高间接型光谱成像仪光谱测量的准确性和一致性.
    In imaging spectrometers, area array detectors are usually used as photoelectric conversion devices, but the inconsistency of the spectral response among pixels can distort the collected target spectra. To improve the spectral radiometric accuracy of imaging spectrometers, calibrating and correcting the inconsistency of the spectral response among pixels is essential. The signal received by each pixel of area array detector of the indirect imaging spectrometer is usually the superposition of the target multi-spectral radiation signals or full-spectral radiation signals. Therefore, its relative spectral radiometric calibration requires measuring the spectral response of each pixel at different wavelengths on the array detector. Under the ideal conditions, the response values of each pixel in the area array detector are different, so the indirect imaging spectrometer cannot simply calibrate the relative spectral response (RSR) function between pixels by using the method of “monochromator + integrating sphere”. In this work, taking the interferometric imaging spectrometer for example, we analyze the influence of the inconsistency of the RSR among pixels on the target spectral radiation measurement accuracy, and propose a system-level RSR function measurement method for the indirect imaging spectrometer based on the Fourier transform modulation calibration source. In addition, we establish a mathematical model for calibrating the RSR function,and provide guidelines for selecting calibration system parameters such as light source, spectral resolution, and OPD sampling interval. The simulation results show that under the ideal noise-free condition, the 1% spectral response inconsistency among pixels results in a relative error of 1.02% to the recovered spectra. After RSR correction, the relative error of the recovered spectra of different rows decreases to 0.08%. Furthermore, in this work we simulate and analyse the influence of spectral signal-to-noise ratio on the calibration accuracy of the RSR function, and point out that increasing the brightness of the calibration light source, extending exposure time, and combining multi-frame interferograms can enhance RSR function calibration accuracy in practical applications. The research result can provide a theoretical basis for realizing the relative spectral radiometric calibration of indirect imaging spectrometer, which is of great significance in promoting quantitative spectral remote sensing.
      通信作者: 冯玉涛, fytciom@126.com
    • 基金项目: 国家自然科学基金(批准号: 41005019)、中国科学院西部青年学者项目(批准号: XAB2016A07)、陕西省自然科学基础研究计划(批准号: 2019JQ-931)、中国科学院西部之光交叉团队项目(批准号: E1294301)和中国科学院科研仪器设备研制项目(批准号: YJKYYQ20210021)资助的课题.
      Corresponding author: Feng Yu-Tao, fytciom@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41005019), the West Light Foundation of the Chinese Academy of Sciences (Grant No. XAB2016A07), the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2019JQ-931), the West Light Cross-Disciplinary Innovation team of Chinese Academy of Sciences (Grant No. E1294301), and the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YJKYYQ20210021).
    [1]

    Luo H Y, Li Z W, Wu Y, Qiu Z W, Shi H L, Wang Q S, Xiong W 2023 Remote Sens. 15 1105Google Scholar

    [2]

    Lassalle G, Ferreira M P, La Rosa L E C, Scafutto R D P M, de Souza Filho C R 2023 ISPRS J. Photogramm. 195 298Google Scholar

    [3]

    刘文龙, 刘学斌, 王爽, 严强强 2022 物理学报 71 094201Google Scholar

    Liu W L, Liu X B, Wang S, Yan Q Q 2022 Acta Phys. Sin. 71 094201Google Scholar

    [4]

    Calin M A, Calin A C, Nicolae D N 2021 Appl. Spectrosc. Rev. 56 289Google Scholar

    [5]

    Jia J X, Wang Y M, Chen J S, Guo R, Shu R, Wang J Y 2020 Infrared Phys. Techn. 104 103115Google Scholar

    [6]

    王建威, 李伟艳, 孙建颖, 李兵, 陈鑫雯, 谭政, 赵娜, 刘扬阳, 吕群波 2022 光谱学与光谱分析 42 2013Google Scholar

    Wang J W, Li W Y, Sun J Y, Li B, Chen X W, Tan Z, Zhao N, Liu Y Y, Lü Q B 2022 Spectrosc. Spect. Anal. 42 2013Google Scholar

    [7]

    唐远河, 崔进, 郜海阳, 屈欧阳, 段晓东, 李存霞, 刘丽娜 2017 物理学报 66 130601Google Scholar

    Tang Y H, Cui J, Gao H Y, Qu O Y, Duan X D, Li C X, Liu L N 2017 Acta Phys. Sin. 66 130601Google Scholar

    [8]

    李志伟, 熊 伟, 施海亮, 王先华, 叶函函, 韦秋叶, 乔延利 2014 红外 34 27

    Li Z W, Xiong W, Shi H L, Wang X H, Ye H H, Wei Q Y, Qiao Y L 2014 Acta Opt. Sin. 34 27

    [9]

    王润昊, 孙影茹, 甘茵露, 吴兴江, 柯俊杰, 王新强, 甘永莹 2022 激光与光电子学进展 59 364Google Scholar

    Wang R H, Sun Y R, Gan Y L, Wu X J, Ke J J, Wang X Q, Gan Y Y 2022 Laser Optoelectronics Prog. 59 364Google Scholar

    [10]

    相里斌, 计忠瑛, 黄旻, 王忠厚, 袁艳 2004 光学学报 33 850

    Xiangli B, Ji Z Y, Huang M, Wang Z H, Yuan Y 2004 Acta Opt. Sin. 33 850

    [11]

    Zhao B C, Yang J F, Xue B, Qiqo W D, Qiu Y H 2010 Acta Photon. Sin 39 769 [赵葆常, 杨建峰, 薛彬, 乔卫东, 邱跃洪 2010 光子学报 39 769]]Google Scholar

    Zhao B C, Yang J F, Xue B, Qiqo W D, Qiu Y H 2010 Acta Photon. Sin 39 769Google Scholar

    [12]

    崔燕 2009 博士学位论文(西安: 中国科学院研究生院西安光学精密机械研究所)

    Cui Y 2009 Ph. D. Dissertation (Xi’an: University of Chinese Academy of Sciences, Xi’an Institute of Optics and Precision Mechanics

    [13]

    Barrat C, Lepot T, Ramamonjisoa M, Fradcourt S 2016 Proc. SPIE 9987 307Google Scholar

    [14]

    Hedelius J K, Squire K J, Peterson J Q, Blagojević B, Gliese U B, Gorman E T, Moser D K, Rhodes Z, Sevilla P, Meister G 2022 Proc. SPIE 12232 283Google Scholar

    [15]

    Englert C R, Harlander J M, Marr K D, Harding B J, Makela J J, Fae T, Brown C M, Venkat Ratnam M, Vijaya Bhaskara Rao S, Immel T J 2023 Space Sci. Rev. 219 27Google Scholar

    [16]

    相里斌, 吕群波, 才啟胜, 方煜, 周锦松, 黄旻 2020 中国科学: 信息科学 50 1462Google Scholar

    Xiang L B, Lv Q B, Cai Q S, Fang Y, Zhou J S, Huang M 2020 Sci. Sin. Inf. 50 1462Google Scholar

    [17]

    王爽 2014 博士学位论文(西安: 中国科学院研究生院西安光学精密机械研究所)

    Wang S 2014 Ph. D. Dissertation (Xi’an: University of Chinese Academy of Sciences, Xi’an Institute of Optics and Precision Mechanics

    [18]

    Wang F B, Zhou J S, Jing J J, Wu Q S, Cheng W 2015 Proc. SPIE 9811 114Google Scholar

    [19]

    相里斌, 王忠厚, 刘学斌, 袁艳, 计忠瑛, 吕群波 2009 航天器工程 24 257Google Scholar

    Xiang L B, Wang Z H, Liu X B, Yuan Y, Ji Z Y, Lü Q B 2009 Spacecraft Engineering 24 257Google Scholar

    [20]

    张亚飞 2023 博士学位论文(西安: 中国科学院西安光学精密机械研究所)

    Zhang Y F 2023 Ph. D. Dissertatio (Xi'an Institute of Optics and Precision Mechanics of CAS

    [21]

    王昕, 康哲铭, 刘龙, 范贤光 2020 物理学报 68 200701Google Scholar

    Wang X, Kang Z M, Liu L, Fan X G 2020 Acta Phys. Sin. 68 200701Google Scholar

    [22]

    孙晨, 冯玉涛, 傅頔, 张亚飞, 李娟 2020 物理学报 69 084201Google Scholar

    Sun C, Feng Y T, Fu D, Zhang Y F, Li J 2020 Acta Phys. Sin. 69 084201Google Scholar

  • 图 1  一列景物目标对应的干涉信息 (a)干涉图[17]; (b) 地面景物图[18]; (c) 景物AB点的辐射光谱

    Fig. 1.  Interferometric information corresponding to a column of scene targets: (a) Interferogram[17]; (b) ground scene[18]; (c) radiation spectral distribution corresponding to scene points A and B.

    图 2  像元间光谱响应不一致对复原光谱的影响 (a) 像元间的光谱响应曲线; (b) 不同行光谱响应不一致对复原光谱的影响

    Fig. 2.  Effect of the spectral response inconsistency among pixels on the recovered spectrum: (a) Spectral response curves among pixels; (b) the effect of different spectral responses on the recovered spectrum.

    图 3  干涉光谱成像仪相对光谱响应函数测试系统

    Fig. 3.  Relative spectral response (RSR) function test system of interferometric imaging spectrometer.

    图 4  理想无噪声情况下, 像元间光谱响应不一致对复原光谱的影响 (a) A点对应的相对光谱响应函数; (b) B 点对应的相对光谱响应函数; (c) AB点误差光谱及其相对误差

    Fig. 4.  Influence of the spectral response inconsistency among pixels on the recovered spectrum under ideal noise-free conditions: (a) RSR function corresponding to point A; (b) RSR function corresponding to point B; (c) error spectrum for points A and B and their relative error.

    图 5  干涉光谱成像仪相对光谱响应函数测量及标定流程图

    Fig. 5.  Flowchart of measurement and calibration of RSR function of interferometric imaging spectrometer.

    图 6  理想无噪声情况下, 干涉光谱成像仪像面第256个像元的干涉图及复原光谱图(以目标点A点为例) (a)干涉图; (b)复原光谱

    Fig. 6.  Under ideal noiseless condition, interferograms and recovered spectrum of the 256th pixel of the interferometric imaging spectrometer (take the point A for example): (a) Interferogram; (b) spectrum.

    图 7  理想无噪声情况下, $ {S}_{{\mathrm{p}}{\mathrm{e}}{\mathrm{c}}}\left(770\;{\mathrm{n}}{\mathrm{m}}, x\right) $ 及其基线拟合效果 (a) $ {S}_{{\mathrm{p}}{\mathrm{e}}{\mathrm{c}}}\left(770\;{\mathrm{n}}{\mathrm{m}}, x\right) $; (b) 基线拟合效果

    Fig. 7.  Under ideal noiseless condition, $ {S}_{{\mathrm{p}}{\mathrm{e}}{\mathrm{c}}}\left(770\;{\mathrm{n}}{\mathrm{m}}, x\right) $ and its baseline fitting effect: (a) $ {S}_{{\mathrm{p}}{\mathrm{e}}{\mathrm{c}}}\left(770\;{\mathrm{n}}{\mathrm{m}}, x\right) $; (b) baseline fitting effect

    图 8  理想无噪声情况下, 相对光谱响应函数的复原效果 (a) A点所对应的行像元间的相对光谱响应函数; (b) B点所对应的行像元间的相对光谱响应函数; (c) AB点校正后的光谱及其相对误差

    Fig. 8.  Restoration effect of the RSR function under ideal noise-free conditions: (a) RSR function among row pixels corresponding to point A; (b) RSR function among row pixels corresponding to point B; (c) corrected spectrum of points A and B and their relative error.

    图 9  SNR = 50时, 相对光谱响应函数的复原效果 (a) A点; (b) B

    Fig. 9.  Restoration effect of RSR function when spectral SNR is 50: (a) Point A; (b) point B.

    图 10  不同信噪比下, AB点相对光谱响应的校正效果 (a) SNR = 50, 校正前光谱; (b) SNR = 50, 校正后光谱; (c) SNR = 50, 光谱的相对误差; (d) SNR = 100, 校正前光谱; (e) SNR = 100, 校正后光谱; (f) SNR = 100, 光谱的相对误差

    Fig. 10.  Correction effect of RSR of points A and B at different SNR: (a) Uncorrected spectrum at SNR = 50; (b) corrected spectrum at SNR = 50; (c) relative error of spectrum at SNR = 50; (d) uncorrected spectrum at SNR = 100; (e) corrected spectrum at SNR = 100; (f) relative error of spectrum at SNR = 100.

    图 11  SNR = 50, 合并50帧干涉图后AB点相对光谱响应的校正效果 (a) 校正前后的光谱; (b)校正前后的相对误差

    Fig. 11.  Correction effect of RSR of points A and B after combining 50 frames of interferograms at SNR = 50: (a) Spectra before and after correction; (b) relative error before and after correction.

    表 1  干涉光谱成像仪相对光谱响应函数测试系统的仿真参数

    Table 1.  Simulation parameters of the RSR function measuring system for interferometric imaging spectrometer

    参数
    光谱范围/nm 458—956
    剪切量 d/mm 0.68
    焦距 f/mm 117
    像元数 256×512 (光谱维2像元合并)
    像元尺寸/μm 18
    光源 氙灯 (458—700 nm)
    卤钨灯 (700—956 nm)
    光程差采样间隔/nm 150
    步数 10000
    光谱分辨率/cm–1 13.33
    光程差采样范围/cm –0.075—0.075
    下载: 导出CSV
  • [1]

    Luo H Y, Li Z W, Wu Y, Qiu Z W, Shi H L, Wang Q S, Xiong W 2023 Remote Sens. 15 1105Google Scholar

    [2]

    Lassalle G, Ferreira M P, La Rosa L E C, Scafutto R D P M, de Souza Filho C R 2023 ISPRS J. Photogramm. 195 298Google Scholar

    [3]

    刘文龙, 刘学斌, 王爽, 严强强 2022 物理学报 71 094201Google Scholar

    Liu W L, Liu X B, Wang S, Yan Q Q 2022 Acta Phys. Sin. 71 094201Google Scholar

    [4]

    Calin M A, Calin A C, Nicolae D N 2021 Appl. Spectrosc. Rev. 56 289Google Scholar

    [5]

    Jia J X, Wang Y M, Chen J S, Guo R, Shu R, Wang J Y 2020 Infrared Phys. Techn. 104 103115Google Scholar

    [6]

    王建威, 李伟艳, 孙建颖, 李兵, 陈鑫雯, 谭政, 赵娜, 刘扬阳, 吕群波 2022 光谱学与光谱分析 42 2013Google Scholar

    Wang J W, Li W Y, Sun J Y, Li B, Chen X W, Tan Z, Zhao N, Liu Y Y, Lü Q B 2022 Spectrosc. Spect. Anal. 42 2013Google Scholar

    [7]

    唐远河, 崔进, 郜海阳, 屈欧阳, 段晓东, 李存霞, 刘丽娜 2017 物理学报 66 130601Google Scholar

    Tang Y H, Cui J, Gao H Y, Qu O Y, Duan X D, Li C X, Liu L N 2017 Acta Phys. Sin. 66 130601Google Scholar

    [8]

    李志伟, 熊 伟, 施海亮, 王先华, 叶函函, 韦秋叶, 乔延利 2014 红外 34 27

    Li Z W, Xiong W, Shi H L, Wang X H, Ye H H, Wei Q Y, Qiao Y L 2014 Acta Opt. Sin. 34 27

    [9]

    王润昊, 孙影茹, 甘茵露, 吴兴江, 柯俊杰, 王新强, 甘永莹 2022 激光与光电子学进展 59 364Google Scholar

    Wang R H, Sun Y R, Gan Y L, Wu X J, Ke J J, Wang X Q, Gan Y Y 2022 Laser Optoelectronics Prog. 59 364Google Scholar

    [10]

    相里斌, 计忠瑛, 黄旻, 王忠厚, 袁艳 2004 光学学报 33 850

    Xiangli B, Ji Z Y, Huang M, Wang Z H, Yuan Y 2004 Acta Opt. Sin. 33 850

    [11]

    Zhao B C, Yang J F, Xue B, Qiqo W D, Qiu Y H 2010 Acta Photon. Sin 39 769 [赵葆常, 杨建峰, 薛彬, 乔卫东, 邱跃洪 2010 光子学报 39 769]]Google Scholar

    Zhao B C, Yang J F, Xue B, Qiqo W D, Qiu Y H 2010 Acta Photon. Sin 39 769Google Scholar

    [12]

    崔燕 2009 博士学位论文(西安: 中国科学院研究生院西安光学精密机械研究所)

    Cui Y 2009 Ph. D. Dissertation (Xi’an: University of Chinese Academy of Sciences, Xi’an Institute of Optics and Precision Mechanics

    [13]

    Barrat C, Lepot T, Ramamonjisoa M, Fradcourt S 2016 Proc. SPIE 9987 307Google Scholar

    [14]

    Hedelius J K, Squire K J, Peterson J Q, Blagojević B, Gliese U B, Gorman E T, Moser D K, Rhodes Z, Sevilla P, Meister G 2022 Proc. SPIE 12232 283Google Scholar

    [15]

    Englert C R, Harlander J M, Marr K D, Harding B J, Makela J J, Fae T, Brown C M, Venkat Ratnam M, Vijaya Bhaskara Rao S, Immel T J 2023 Space Sci. Rev. 219 27Google Scholar

    [16]

    相里斌, 吕群波, 才啟胜, 方煜, 周锦松, 黄旻 2020 中国科学: 信息科学 50 1462Google Scholar

    Xiang L B, Lv Q B, Cai Q S, Fang Y, Zhou J S, Huang M 2020 Sci. Sin. Inf. 50 1462Google Scholar

    [17]

    王爽 2014 博士学位论文(西安: 中国科学院研究生院西安光学精密机械研究所)

    Wang S 2014 Ph. D. Dissertation (Xi’an: University of Chinese Academy of Sciences, Xi’an Institute of Optics and Precision Mechanics

    [18]

    Wang F B, Zhou J S, Jing J J, Wu Q S, Cheng W 2015 Proc. SPIE 9811 114Google Scholar

    [19]

    相里斌, 王忠厚, 刘学斌, 袁艳, 计忠瑛, 吕群波 2009 航天器工程 24 257Google Scholar

    Xiang L B, Wang Z H, Liu X B, Yuan Y, Ji Z Y, Lü Q B 2009 Spacecraft Engineering 24 257Google Scholar

    [20]

    张亚飞 2023 博士学位论文(西安: 中国科学院西安光学精密机械研究所)

    Zhang Y F 2023 Ph. D. Dissertatio (Xi'an Institute of Optics and Precision Mechanics of CAS

    [21]

    王昕, 康哲铭, 刘龙, 范贤光 2020 物理学报 68 200701Google Scholar

    Wang X, Kang Z M, Liu L, Fan X G 2020 Acta Phys. Sin. 68 200701Google Scholar

    [22]

    孙晨, 冯玉涛, 傅頔, 张亚飞, 李娟 2020 物理学报 69 084201Google Scholar

    Sun C, Feng Y T, Fu D, Zhang Y F, Li J 2020 Acta Phys. Sin. 69 084201Google Scholar

  • [1] 王洪亮, 吕金光, 梁静秋, 梁中翥, 秦余欣, 王维彪. 中波红外微型静态傅里叶变换光谱仪的设计与分析. 物理学报, 2018, 67(6): 060702. doi: 10.7498/aps.67.20172599
    [2] 唐远河, 崔进, 郜海阳, 屈欧阳, 段晓东, 李存霞, 刘丽娜. 地基气辉成像干涉仪探测高层大气风场的定标研究. 物理学报, 2017, 66(13): 130601. doi: 10.7498/aps.66.130601
    [3] 魏宇童, 刘尚阔, 颜廷昱, 李祺伟. 偏振型干涉成像光谱仪谱线位置定标方法的研究. 物理学报, 2016, 65(8): 080601. doi: 10.7498/aps.65.080601
    [4] 刘扬阳, 吕群波, 吴戈, 裴琳琳, 王建威. 编码孔径光谱成像仪光学简化彗差对图谱反演误差分析. 物理学报, 2015, 64(5): 054205. doi: 10.7498/aps.64.054205
    [5] 陈成, 梁静秋, 梁中翥, 吕金光, 秦余欣, 田超, 王维彪. 准直系统热光学效应对静态傅里叶变换红外光谱仪光谱复原的影响研究. 物理学报, 2015, 64(13): 130703. doi: 10.7498/aps.64.130703
    [6] 李金洋, 逯丹凤, 祁志美. 集成光波导静态傅里叶变换微光谱仪分辨率倍增方法. 物理学报, 2015, 64(11): 114207. doi: 10.7498/aps.64.114207
    [7] 夏茂鹏, 李健军, 高冬阳, 胡友勃, 盛文阳, 庞伟伟, 郑小兵. 基于相关光子多模式相关性的InSb模拟探测器定标方法. 物理学报, 2015, 64(24): 240601. doi: 10.7498/aps.64.240601
    [8] 朱国梁, 胡仁志, 谢品华, 陈浩, 秦敏, 方武, 王丹, 杏兴彪. 基于差分光学吸收光谱方法的OH自由基定标系统研究. 物理学报, 2015, 64(8): 080703. doi: 10.7498/aps.64.080703
    [9] 赵敏杰, 司福祺, 陆亦怀, 汪世美, 江宇, 周海金, 刘文清. 星载大气痕量气体差分吸收光谱仪定标系统中铝漫反射板实验测量研究. 物理学报, 2013, 62(24): 249301. doi: 10.7498/aps.62.249301
    [10] 刘扬阳, 吕群波, 曾晓茹, 黄旻, 相里斌. 静态计算光谱成像仪图谱反演的关键数据处理技术. 物理学报, 2013, 62(6): 060203. doi: 10.7498/aps.62.060203
    [11] 吕金光, 梁静秋, 梁中翥. 多级反射镜阵列Monte Carlo法误差合成与统计分析. 物理学报, 2012, 61(22): 220701. doi: 10.7498/aps.61.220701
    [12] 吕金光, 梁静秋, 梁中翥. 空间调制傅里叶变换光谱仪分束器色散特性研究. 物理学报, 2012, 61(14): 140702. doi: 10.7498/aps.61.140702
    [13] 吕金光, 梁静秋, 梁中翥. 窄带傅里叶变换光谱仪中平稳高斯噪声的理论分析. 物理学报, 2012, 61(7): 070704. doi: 10.7498/aps.61.070704
    [14] 严新革, 张淳民, 赵葆常. 时空混合调制型偏振干涉成像光谱仪干涉图获取模式研究. 物理学报, 2010, 59(5): 3123-3129. doi: 10.7498/aps.59.3123
    [15] 王栋. 滤波-荧光谱仪的优化设计. 物理学报, 2010, 59(1): 443-446. doi: 10.7498/aps.59.443
    [16] 王波, 梁中翥, 孔延梅, 梁静秋, 付建国, 郑莹, 朱万彬, 吕金光, 王维彪, 裴舒, 张军. 用于微型光谱仪的硅基多级微反射镜设计与制作研究. 物理学报, 2010, 59(2): 907-912. doi: 10.7498/aps.59.907
    [17] 李健军, 郑小兵, 卢云君, 张伟, 谢萍, 邹鹏. 硅陷阱探测器在350—1064 nm波段的绝对光谱响应度定标. 物理学报, 2009, 58(9): 6273-6278. doi: 10.7498/aps.58.6273
    [18] 相里斌, 袁艳, 吕群波. 傅里叶变换光谱成像仪光谱传递函数研究. 物理学报, 2009, 58(8): 5399-5405. doi: 10.7498/aps.58.5399
    [19] 袁志林, 张淳民, 赵葆常. 新型偏振干涉成像光谱仪信噪比研究. 物理学报, 2007, 56(11): 6413-6419. doi: 10.7498/aps.56.6413
    [20] 徐升美, 何怡贞. 关于光谱分析中定标曲线斜度的讨论. 物理学报, 1959, 15(4): 178-185. doi: 10.7498/aps.15.178
计量
  • 文章访问数:  2435
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-30
  • 修回日期:  2024-04-18
  • 上网日期:  2024-05-06
  • 刊出日期:  2024-06-20

/

返回文章
返回