搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水平管内超临界R1234ze(E)冷却传热性能的神经网络预测

周文力 卓伟伟 蒋依然 马文杰 董宝君

引用本文:
Citation:

水平管内超临界R1234ze(E)冷却传热性能的神经网络预测

周文力, 卓伟伟, 蒋依然, 马文杰, 董宝君

Neural Network Prediction of Cooling Heat Transfer Characteristics of Supercritical R1234ze (E) in Horizontal Tube

Zhou Wen-Li, Zhuo Wei-Wei, Jiang Yi-Ran, Ma Wen-Jie, Dong Bao-Jun
PDF
导出引用
  • 为探究神经网络在预测超临界传热方面的有效性,本研究建立了水平直管内超临界R1234ze(E)冷却传热的神经网络预测模型,并与修正的D-B型传热关联式进行比较分析。研究表明,输入参数对于BPNN预测精度的影响很大,且并非所有BPNN输入参数组合都能带来比传热关联式更好的预测结果。输入参数组合$\operatorname{Re}_b 、 P r_b 、 \rho_b / \rho_w$、$\bar{C}_p / C_{p w} 、 \lambda_b / \lambda_w 、 \mu_b / \mu_w$ 的预测表现最好,对于试验集的预测结果的AAD和Errormax仅为2.02 %和9.34 %,远低于传热关联式预测偏差,且对于高温段h的趋势、h最大值以及h峰值位置的预测比关联式更加准确。此外,本研究将GA-BP模型与BP模型在两种不同的适应度值计算方式下进行比较,揭示GA-BP在提高超临界传热预测精度方面的有效性。研究表明,当网络训练与适应度值计算采用相同数据时,将引起过拟合,并不能进一步提高预测精度;当网络训练与适应度值计算采用不同数据时,可使得网络泛化性能提高,预测结果的均方根偏差和最大偏差均有进一步的降低。
    The prediction of heat transfer coefficients or wall temperatures of heat exchanger tubes is an important research topic in supercritical heat transfer, which is extremely significant for the application of supercritical fluids in industrial production and the design of the entire thermal system. At present, the empirical correlation method is the most widely adopted prediction method, but there is still a significant difference between its predicted value of heat transfer coefficient and the actual data near the pseudo-critical temperature. Therefore, some scholars have proposed using artificial neural networks to predict the heat transfer performance of supercritical fluids in tubes. On the basis of previous researches, this paper further explores the effectiveness of artificial neural network in predicting supercritical heat transfer, focusing on the influence of input parameters on neural network prediction results and the influence of genetic algorithm optimization on the prediction results.
    In this research, a neural network prediction model for supercritical R1234ze(E) cooled in horizontal straight tubes is established and compared with the modified D-B heat transfer correlation. The result shows that the input parameter has great impact on the prediction accuracy of BPNN, and not all BPNN input parameter combinations can bring better prediction results than heat transfer correlation. The combination of $\operatorname{Re}_b 、 P r_b 、 \rho_b / \rho_w$、$\bar{C}_p / C_{p w} 、 \lambda_b / \lambda_w 、 \mu_b / \mu_w$ 的预测表现最好,对于试验集的预测结果的AAD和Errormax features the best prediction performance. The AAD and Errormax of the prediction result for the trial set are only 2.02 % and 9.34 %, which are far lower than the prediction deviation of the heat transfer correlation, and the predictions of the trend of h in the high temperature region, the maximum value of h and the position of the peak value of h are more precise than correlation. Moreover, this research compares GA-BP model with BP model under two different fitness value calculation methods to reveal the effectiveness of GA-BP in enhancing the prediction accuracy of supercritical heat transfer. It concludes that, when the same dataset is adopted for network training and fitness value calculation, over-fitting will occur and the GA-BP cannot further improve the prediction accuracy; when different datasets are adopted for network training and fitness value calculation, the generalization ability of the network will be strengthened, the root mean square deviation and the maximum deviation of the prediction result can be further reduced.
  • [1]

    Dittus FW and Boelter LMK. Heat transfer in automobile radiators of the tubular type[J]. 1930 University of California Publications of Engineering 2 443.

    [2]

    Gnielinski V. New equation for heat and mass transfer in turbulent pipe and channel flow[J]. 1976 International Journal of Chemical Engineering 16 359.

    [3]

    Bae Y Y and Kim H Y. Convective heat transfer to CO2 at a supercritical pressure flowing vertically upward in tubes and an annular channel[J]. 2009 Experimental Thermal and Fluid Science 33 329.

    [4]

    Saltanov E. Specifics of forced-convective heat transfer to supercritical CO2 flowing upward in vertical bare tubes[D]. 2015 University of Ontario Institute of Technology.

    [5]

    Kim J K, Jeon H K and Lee J S. Wall temperature measurement and heat transfer correlation of turbulent supercritical carbon dioxide flow in vertical circular/non-circular tubes[J]. 2007 Nuclear Engineering and Design 237 1795.

    [6]

    Kuang G, Ohadi M and Dessiatoun S. Semi-empirical correlation of gas cooling heat transfer of supercritical carbon dioxide in microchannels[J]. 2008 HVACR Research 14 861.

    [7]

    Zhang S J, Xu X X, Liu C, Liu X X, Ru Z P, Dang C B. Experimental and numerical comparison of the heat transfer behaviors and buoyancy effects of supercritical CO2 in various heating tubes[J]. 2020 International Journal of Heat and Mass Transfer 149 119074.

    [8]

    Wang L, Pan Y C, Lee J D, Wang Y, Fu B R, Pan C. Experimental investigation in the local heat transfer of supercritical carbon dioxide in the uniformly heated horizontal miniature tubes[J]. 2020 International Journal of Heat and Mass Transfer 159 120136.

    [9]

    Liu S H, Huang Y P, Liu G X, Wang J F, Leung L K H. Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes[J]. 2017 International Journal of Heat and Mass Transfer 106 1144.

    [10]

    Kim D E and Kim M H. Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube[J]. 2010 Nuclear Engineering and Design 240 3336.

    [11]

    Kumar R, Nikam K and Jilte R. A simulation model to predict coal-fired power plant production rate using artificial neural network tool[J]. 2020 Applied Computer Vision and Image Processing 1 150.

    [12]

    Ahmadi M H, Ghazvini M, Maddah H, Kahani M, Pourfarhang S, Pourfarhang A, Heris S Z. Prediction of the pressure drop for CuO/(Ethylene glycol-water) nanofluid flows in the car radiator by means of Artificial Neural Networks analysis integrated with genetic algorithm[J]. 2020 Physica A 546 124008.

    [13]

    Aghayari R, Maddah H, Ahmadi M H, Yan W M, Ghasemi N. Measurement and artificial neural network modeling of electrical conductivity of CuO/glycerol nanofluids at various thermal and concentration conditions[J]. 2018 Energies 11 1190.

    [14]

    Mensah R A, Jiang L, Asante-Okyere S, Xu Q, Jin C. Comparative evaluation of the predictability of neural network methods on the flammability characteristics of extruded polystyrene from microscale combustion calorimetry[J]. 2019 Journal of Thermal Analysis and Calorimetry 138 3055.

    [15]

    Ye K, Zhang Y L, Yang L L, Zhao Y R, Li N, Xi C K. Modeling convective heat transfer of supercritical carbon dioxide using an artificial neural network[J]. 2019 Applied Thermal Engineering 150 686.

    [16]

    Zhu B, Zhu X, Xie J, Xu J L, Liu H. Heat transfer prediction of supercritical carbon dioxide in vertical tube based on artificial neural networks[J]. 2021 Journal of Thermal Sciences 30 1751.

    [17]

    Prasad K S R, Krishna V, Bharadwaj M S, Ponangi B R. Turbulent heat transfer characteristics of supercritical carbon dioxide for a vertically upward flow in a pipe using computational fluid dynamics and artificial neural network[J]. 2022 Journal of Heat Transfer 144 011802.

    [18]

    Ma D, Zhou T, Chen J, Qi S, Shahzad M A, Xiao Z J. Supercritical water heat transfer coefficient prediction analysis based on BP neural network[J]. 2017 Nuclear Engineering and Design 320 400.

    [19]

    Chang W, Chu X, Fareed A F B S, Pandey S, Luo J Y, Weigand B, Laurien E. Heat transfer prediction of supercritical water with artificial neural networks[J]. 2018 Applied Thermal Engineering 131 815.

    [20]

    Sun F, Xie G and Li S. An artificial-neural-network based prediction of heat transfer behaviors for in-tube supercritical CO2 flow[J]. 2021 Applied Soft Computing 102 107110.

    [21]

    Sun F, Xie G, Song J, Li S L, Markides C N. Thermal characteristics of in-tube upward supercritical CO2 flows and a new heat transfer prediction model based on artificial neural networks (ANN)[J]. 2021 Applied Thermal Engineering 194 117067.

    [22]

    Jiang Y R, Hu P* and Ibrahim A. Experimental and numerical investigation on heat transfer characteristics of supercritical R1234ze(E) cooled in horizontal tubes[J]. 2020 International Journal of Heat and Fluid Flow 85 108650.

    [23]

    Dang C B and Hihara E. Predicting the cooling heat transfer coefficient of supercritical CO2 with a small amount of entrained lubricating oil by using the neural network method[J]. 2012 International Journal of Refrigeration 35 1130.

  • [1] 黄宇航, 陈理想. 基于未训练神经网络的分数傅里叶变换成像. 物理学报, doi: 10.7498/aps.73.20240050
    [2] 马锐垚, 王鑫, 李树, 勇珩, 上官丹骅. 基于神经网络的粒子输运问题高效计算方法. 物理学报, doi: 10.7498/aps.73.20231661
    [3] 杨莹, 曹怀信. 量子混合态的两种神经网络表示. 物理学报, doi: 10.7498/aps.72.20221905
    [4] 方波浪, 王建国, 冯国斌. 基于物理信息神经网络的光斑质心计算. 物理学报, doi: 10.7498/aps.71.20220670
    [5] 李靖, 孙昊. 识别Z玻色子喷注的卷积神经网络方法. 物理学报, doi: 10.7498/aps.70.20201557
    [6] 孙立望, 李洪, 汪鹏君, 高和蓓, 罗孟波. 利用神经网络识别高分子链在表面的吸附相变. 物理学报, doi: 10.7498/aps.68.20190643
    [7] 魏德志, 陈福集, 郑小雪. 基于混沌理论和改进径向基函数神经网络的网络舆情预测方法. 物理学报, doi: 10.7498/aps.64.110503
    [8] 李欢, 王友国. 一类非线性神经网络中噪声改善信息传输. 物理学报, doi: 10.7498/aps.63.120506
    [9] 陈铁明, 蒋融融. 混沌映射和神经网络互扰的新型复合流密码. 物理学报, doi: 10.7498/aps.62.040301
    [10] 张弦, 王宏力. 基于Cholesky分解的增量式RELM及其在时间序列预测中的应用. 物理学报, doi: 10.7498/aps.60.110201
    [11] 李华青, 廖晓峰, 黄宏宇. 基于神经网络和滑模控制的不确定混沌系统同步. 物理学报, doi: 10.7498/aps.60.020512
    [12] 赵海全, 张家树. 混沌通信系统中非线性信道的自适应组合神经网络均衡. 物理学报, doi: 10.7498/aps.57.3996
    [13] 王永生, 孙 瑾, 王昌金, 范洪达. 变参数混沌时间序列的神经网络预测研究. 物理学报, doi: 10.7498/aps.57.6120
    [14] 牛培峰, 张 君, 关新平. 基于遗传算法的统一混沌系统比例-积分-微分神经网络解耦控制研究. 物理学报, doi: 10.7498/aps.56.2493
    [15] 行鸿彦, 徐 伟. 混沌背景中微弱信号检测的神经网络方法. 物理学报, doi: 10.7498/aps.56.3771
    [16] 王瑞敏, 赵 鸿. 神经元传输函数对人工神经网络动力学特性的影响. 物理学报, doi: 10.7498/aps.56.730
    [17] 熊 涛, 常胜江, 申金媛, 张延炘. 用于可变比特率视频通信量预测的自适应训练及删剪算法. 物理学报, doi: 10.7498/aps.54.1931
    [18] 王耀南, 谭 文. 混沌系统的遗传神经网络控制. 物理学报, doi: 10.7498/aps.52.2723
    [19] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制. 物理学报, doi: 10.7498/aps.51.2463
    [20] 神经网络的自适应删剪学习算法及其应用. 物理学报, doi: 10.7498/aps.50.674
计量
  • 文章访问数:  106
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2024-05-10

/

返回文章
返回