搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水平管内超临界R1234ze(E)冷却传热性能的神经网络预测

周文力 卓伟伟 蒋依然 马文杰 董宝君

引用本文:
Citation:

水平管内超临界R1234ze(E)冷却传热性能的神经网络预测

周文力, 卓伟伟, 蒋依然, 马文杰, 董宝君

Neural network prediction of cooling heat transfer characteristics of supercritical R1234ze(E) in horizontal tube

Zhou Wen-Li, Zhuo Wei-Wei, Jiang Yi-Ran, Ma Wen-Jie, Dong Bao-Jun
PDF
HTML
导出引用
  • 为探究神经网络在预测超临界传热方面的有效性, 建立了水平直管内超临界R1234ze(E)冷却传热的神经网络预测模型, 并与修正的Dittus-Boelter (D-B)型传热关联式进行比较分析. 研究表明, 输入参数对于反向传播神经网络(BPNN)预测精度的影响很大, 且并非所有BPNN输入参数组合都能带来比传热关联式更好的预测结果. 输入参数组合$ {{Re} _{\text{b}}} $, $ {Pr _{\text{b}}} $, $ {{{\rho _{\text{b}}}} \mathord{\left/ {\vphantom {{{\rho _{\text{b}}}} {{\rho _{\text{w}}}}}} \right. } {{\rho _{\text{w}}}}} $, $ {{{{\overline C }_{\text{p}}}} \mathord{\left/ {\vphantom {{{{\overline C }_{\text{p}}}} {{C_{{\text{pw}}}}}}} \right. } {{C_{{\text{pw}}}}}} $, $ {{{\lambda _{\text{b}}}} \mathord{\left/ {\vphantom {{{\lambda _{\text{b}}}} {{\lambda _{\text{w}}}}}} \right. } {{\lambda _{\text{w}}}}} $, $ {{{\mu _{\text{b}}}} \mathord{\left/ {\vphantom {{{\mu _{\text{b}}}} {{\mu _{\text{w}}}}}} \right. } {{\mu _{\text{w}}}}} $的预测表现最好, 对于试验集的预测结果的平均绝对偏差和最大偏差仅为2.02%和9.34%, 远低于传热关联式预测偏差, 且对于高温段h的趋势、h最大值以及h峰值位置的预测比关联式更加准确. 此外, 将遗传算法优化的BP (GA-BP)模型与BP模型在两种不同的适应度值计算方式下进行比较, 揭示GA-BP在提高超临界传热预测精度方面的有效性. 研究表明, 当网络训练与适应度值计算采用相同数据时, 将引起过拟合, 并不能进一步提高预测精度; 当网络训练与适应度值计算采用不同数据时, 可使得网络泛化性能提高, 预测结果的均方根偏差和最大偏差均有进一步的降低.
    The prediction of heat transfer coefficients or wall temperatures of heat exchanger tubes is an important research topic in supercritical heat transfer, which is extremely significant for the application of supercritical fluids in industrial production and the design of the entire thermal system. At present, the empirical correlation method is the most widely adopted prediction method, but its predicted heat transfer coefficient still has significant difference from the actual data near the pseudo-critical temperature. Therefore, some scholars proposed using artificial neural networks to predict the heat transfer performance of supercritical fluids in tubes. On the basis of previous researches, this work further explores the effectiveness of artificial neural network in predicting supercritical heat transfer, focusing on the influence of input parameters on neural network prediction results and the influence of genetic algorithm optimization on the prediction results.In this research, a neural network prediction model for supercritical R1234ze(E) cooled in horizontal straight tubes is established and compared with the modified D-B heat transfer correlation. The result shows that the input parameter has great influence on the prediction accuracy of BPNN, and not all BPNN input parameter combinations can bring better prediction results than heat transfer correlation. The combination of $ {{Re} _{\text{b}}} $, $ {Pr _{\text{b}}} $, $ {{{\rho _{\text{b}}}} \mathord{\left/ {\vphantom {{{\rho _{\text{b}}}} {{\rho _{\text{w}}}}}} \right. } {{\rho _{\text{w}}}}} $, $ {{{{\overline C }_{\text{p}}}} \mathord{\left/ {\vphantom {{{{\overline C }_{\text{p}}}} {{C_{{\text{pw}}}}}}} \right. } {{C_{{\text{pw}}}}}} $, $ {{{\lambda _{\text{b}}}} \mathord{\left/ {\vphantom {{{\lambda _{\text{b}}}} {{\lambda _{\text{w}}}}}} \right. } {{\lambda _{\text{w}}}}} $, $ {{{\mu _{\text{b}}}} \mathord{\left/ {\vphantom {{{\mu _{\text{b}}}} {{\mu _{\text{w}}}}}} \right. } {{\mu _{\text{w}}}}} $ features the best prediction performance. The AAD and Errormax of the prediction result for the trial set are only 2.02% and 9.34%, which are far lower than the prediction deviation of the heat transfer correlation, and the predictions of the trend of h in the high temperature region, the maximum value of h and the position of the peak value of h are more precise than heat transfer correlation. Moreover, this research compares GA-BP model with BP model under two different fitness value calculation methods to reveal the effectiveness of GA-BP in enhancing the prediction accuracy of supercritical heat transfer, concluding that when the same dataset is adopted for network training and fitness value calculation, over-fitting will occur and the GA-BP cannot further improve the prediction accuracy; when different datasets are used to train the network and calculate the fitness value, the generalization ability of the network will be strengthened, and the root mean square deviation and the maximum deviation of the prediction result can be further reduced.This work will provide a practical tool for predicting the cooling convection heat transfer of supercritical R1234ze(E) in horizontal tubes, laying the foundation for its application in trans-critical heat pump systems, and providing inspiration for potential research directions of ANN in supercritical heat transfer prediction.
      通信作者: 蒋依然, jiangyr@cdut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52176171)资助的课题.
      Corresponding author: Jiang Yi-Ran, jiangyr@cdut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52176171).
    [1]

    Dittus F W, Boelter L M K 1930 Univ. California Publicat. Eng. 2 443

    [2]

    Gnielinski V 1976 Int. J. Chem. Eng. 16 359

    [3]

    Bae Y Y, Kim H Y 2009 Exp. Therm. Fluid Sci. 33 329Google Scholar

    [4]

    Saltanov E 2015 Ph. D. Dissertation (University of Ontario Institute of Technology

    [5]

    Kim J K, Jeon H K, Lee J S 2007 Nucl. Eng. Des. 237 1795Google Scholar

    [6]

    Kuang G, Ohadi M, Dessiatoun S 2008 HVACR Res. 14 861Google Scholar

    [7]

    Zhang S J, Xu X X, Liu C, Liu X X, Ru Z P, Dang C B 2020 Int. J. Heat Mass Transfer 149 119074Google Scholar

    [8]

    Wang L, Pan Y C, Lee J D, Wang Y, Fu B R, Pan C 2020 Int. J. Heat Mass Transfer 159 120136Google Scholar

    [9]

    Liu S H, Huang Y P, Liu G X, Wang J F, Leung L K H 2017 Int. J. Heat Mass Transfer 106 1144Google Scholar

    [10]

    Kim D E, Kim M H 2010 Nucl. Eng. Des. 240 3336Google Scholar

    [11]

    Kumar R, Nikam K, Jilte R 2020 Applied Computer Vision and Image Processing Advances in Intelligent Systems and Computing (Singapore: Springer

    [12]

    Ahmadi M H, Ghazvini M, Maddah H, Kahani M, Pourfarhang S, Pourfarhang A, Heris S Z 2020 Physica A 546 124008Google Scholar

    [13]

    Aghayari R, Maddah H, Ahmadi M H, Yan W M, Ghasemi N 2018 Energies 11 1190Google Scholar

    [14]

    Mensah R A, Jiang L, Asante-Okyere S, Xu Q, Jin C 2019 J. Therm. Anal. Calorim. 138 3055Google Scholar

    [15]

    Ye K, Zhang Y L, Yang L L, Zhao Y R, Li N, Xi C K 2019 Appl. Therm. Eng. 150 686Google Scholar

    [16]

    Zhu B, Zhu X, Xie J, Xu J L, Liu H 2021 J. Therm. Sci. 30 1751Google Scholar

    [17]

    Prasad K S R, Krishna V, Bharadwaj M S, Ponangi B R 2022 J. Heat Transfer 144 011802Google Scholar

    [18]

    Ma D, Zhou T, Chen J, Qi S, Shahzad M A, Xiao Z J 2017 Nucl. Eng. Des. 320 400Google Scholar

    [19]

    Chang W, Chu X, Fareed A F B S, Pandey S, Luo J Y, Weigand B, Laurien E 2018 Appl. Therm. Eng. 131 815Google Scholar

    [20]

    Sun F, Xie G, Li S 2021 Appl. Soft Comput. 102 107110Google Scholar

    [21]

    Sun F, Xie G, Song J, Li S L, Markides C N 2021 Appl. Therm. Eng. 194 117067Google Scholar

    [22]

    Jiang Y R, Hu P, Ibrahim A 2020 Int. J. Heat Fluid Flow 85 108650Google Scholar

    [23]

    Dang C B, Hihara E 2012 Int. J. Refrigeration 35 1130Google Scholar

  • 图 1  传热数据集的全部数据点分布 (a)不同管径下的传热系数; (b) 不同质量通量下的传热系数; (c) 不同热流密度下的传热系数; (d) 不同压力下的传热系数

    Fig. 1.  Distributions of all data points for the heat transfer dataset: (a) Heat transfer coefficients under different tube diameters; (b) heat transfer coefficients under different mass fluxes; (c) heat transfer coefficients under different heat fluxes; (d) heat transfer coefficients under different pressures.

    图 2  具有一层隐藏层的BPNN结构

    Fig. 2.  BPNN structure with one hidden layer.

    图 3  BPNN训练流程

    Fig. 3.  BPNN training process.

    图 4  关联式和神经网络对试验集预测结果的对比 (a)工况1; (b)工况2; (c) 工况3; (d)工况4

    Fig. 4.  Comparison of prediction results of correlation and neural network on the trial set: (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4.

    图 5  关联式和神经网络对试验集努塞尔数预测结果的对比

    Fig. 5.  Comparison of Nusselt prediction results of correlation and neural network on the trial set.

    图 6  GA-BP神经网络流程图

    Fig. 6.  GA-BP neural network flowchart.

    图 7  (a) BP网络与(b) GA-BP网络对试验集预测结果的对比

    Fig. 7.  Comparison of prediction results of (a) BP network and (b) GA-BP network on the trial set.

    图 8  (a) BP网络与(b) GA-BP-I网络对试验集预测结果的对比

    Fig. 8.  Comparison of prediction results of (a) BP network and (b) GA-BP-I network on the trial set.

    图 9  BP网络与GA-BP-I网络对试验集177个数据点的预测偏差分布图

    Fig. 9.  Distributions of prediction bias of BP network and GA-BP-I network for 177 data points of the trial set.

    表 1  CFD模拟数据集全部工况

    Table 1.  CFD simulation dataset for all operating conditions.

    Case d/mm G/(kg·m–2·s–1) q /(kW·m–2) P/MPa Tb /K
    1—12 3, 4, 5, 6, 7, 8, 9, 10,
    11, 12, 13, 14
    320 –40 4.0 370—420
    13—24 6 160, 200, 240, 280, 320, 360,
    400, 440, 480, 520, 560, 600
    –40 4.0 370—420
    25—34 6 320 –10, –20, –30, –40, –50, –60,
    –70, –80, –90, –100
    4.0 370—420
    35—44 6 320 –40 3.8, 4.0, 4.2, 4.4,
    4.6, 4.8, 5.0, 5.2,
    370—420
    下载: 导出CSV

    表 2  BPNN模型参数的设置

    Table 2.  Parameters of the BPNN model.

    序号项目值或选择
    1隐藏层神经元数目由测试集的预测结果确定
    2隐藏层传递函数tansig
    3输出层传递函数purelin
    4训练函数类型由测试集的预测结果确定
    5学习函数类型learngdm
    6最大迭代次数20000
    7训练目标误差10–10
    8网络学习速率0.1
    9验证集最大确认失败数6
    下载: 导出CSV

    表 3  4种工况参数设置

    Table 3.  Parameters of four cases.

    d/mm G/(kg·m–2·s–1) q/(kW·m–2) P/MPa
    Case 1 8 250 –75 3.9
    Case 2 5 460 –55 3.9
    Case 3 8 220 –65 4.5
    Case 4 7 300 –25 4.5
    下载: 导出CSV

    表 4  输入参数对试验集预测结果的影响

    Table 4.  Impacts of input parameters on the prediction results of the trial set

    输入参数试验集预测结果
    AAD/%RMSE/%Errormax/%
    传热关联式5.587.7229.40
    BP神经网络1)$ {{Re} _{\text{b}}} $, $ {Pr _{\text{b}}} $, $ {{{\rho _{\text{b}}}} \mathord{\left/ {\vphantom {{{\rho _{\text{b}}}} {{\rho _{\text{w}}}}}} \right. } {{\rho _{\text{w}}}}} $, $ {{{{\overline C }_{\text{p}}}} \mathord{\left/ {\vphantom {{{{\overline C }_{\text{p}}}} {{C_{{\text{pw}}}}}}} \right. } {{C_{{\text{pw}}}}}} $, $ {{Gr} \mathord{\left/ {\vphantom {{Gr} {{Re} _{\text{b}}^{2}}}} \right. } {{Re} _{\text{b}}^{2}}} $8.2412.4043.98
    2)$ {{Re} _{\text{b}}} $, $ {Pr _{\text{b}}} $, $ {{{\rho _{\text{b}}}} \mathord{\left/ {\vphantom {{{\rho _{\text{b}}}} {{\rho _{\text{w}}}}}} \right. } {{\rho _{\text{w}}}}} $, $ {{{{\overline C }_{\text{p}}}} \mathord{\left/ {\vphantom {{{{\overline C }_{\text{p}}}} {{C_{{\text{pw}}}}}}} \right. } {{C_{{\text{pw}}}}}} $3.515.0715.19
    3)$ {{Re} _{\text{b}}} $, $ {Pr _{\text{b}}} $, $ {{{\rho _{\text{b}}}} \mathord{\left/ {\vphantom {{{\rho _{\text{b}}}} {{\rho _{\text{w}}}}}} \right. } {{\rho _{\text{w}}}}} $, $ {{{{\overline C }_{\text{p}}}} \mathord{\left/ {\vphantom {{{{\overline C }_{\text{p}}}} {{C_{{\text{pw}}}}}}} \right. } {{C_{{\text{pw}}}}}} $, $ {{{\lambda _{\text{b}}}} \mathord{\left/ {\vphantom {{{\lambda _{\text{b}}}} {{\lambda _{\text{w}}}}}} \right. } {{\lambda _{\text{w}}}}} $, $ {{{\mu _{\text{b}}}} \mathord{\left/ {\vphantom {{{\mu _{\text{b}}}} {{\mu _{\text{w}}}}}} \right. } {{\mu _{\text{w}}}}} $2.023.019.34
    4)G, q, d, Tb, $ {\rho _{\text{b}}} $9.8915.5273.24
    5)G, q, d, Tb, $ {\rho _{\text{b}}} $, $ {C_{{\text{pb}}}} $, $ {\lambda _{\text{b}}} $, $ {\mu _{\text{b}}} $, 4.585.3511.35
    6)G, q, d, Tb, $ {\rho _{\text{b}}} $, $ {{{\rho _{\text{b}}}} \mathord{\left/ {\vphantom {{{\rho _{\text{b}}}} {{\rho _{\text{w}}}}}} \right. } {{\rho _{\text{w}}}}} $, $ {{{{\overline C }_{\text{p}}}} \mathord{\left/ {\vphantom {{{{\overline C }_{\text{p}}}} {{C_{{\text{pw}}}}}}} \right. } {{C_{{\text{pw}}}}}} $, $ {{{\lambda _{\text{b}}}} \mathord{\left/ {\vphantom {{{\lambda _{\text{b}}}} {{\lambda _{\text{w}}}}}} \right. } {{\lambda _{\text{w}}}}} $, $ {{{\mu _{\text{b}}}} \mathord{\left/ {\vphantom {{{\mu _{\text{b}}}} {{\mu _{\text{w}}}}}} \right. } {{\mu _{\text{w}}}}} $47.2463.17224.89
    7)G, q, d, Tb, $ {\rho _{\text{b}}} $, $ {C_{{\text{pb}}}} $, $ {\lambda _{\text{b}}} $, $ {\mu _{\text{b}}} $, $ {{{\rho _{\text{b}}}} \mathord{\left/ {\vphantom {{{\rho _{\text{b}}}} {{\rho _{\text{w}}}}}} \right. } {{\rho _{\text{w}}}}} $, $ {{{{\overline C }_{\text{p}}}} \mathord{\left/ {\vphantom {{{{\overline C }_{\text{p}}}} {{C_{{\text{pw}}}}}}} \right. } {{C_{{\text{pw}}}}}} $, $ {{{\lambda _{\text{b}}}} \mathord{\left/ {\vphantom {{{\lambda _{\text{b}}}} {{\lambda _{\text{w}}}}}} \right. } {{\lambda _{\text{w}}}}} $, $ {{{\mu _{\text{b}}}} \mathord{\left/ {\vphantom {{{\mu _{\text{b}}}} {{\mu _{\text{w}}}}}} \right. } {{\mu _{\text{w}}}}} $52.5263.15151.79
    下载: 导出CSV
  • [1]

    Dittus F W, Boelter L M K 1930 Univ. California Publicat. Eng. 2 443

    [2]

    Gnielinski V 1976 Int. J. Chem. Eng. 16 359

    [3]

    Bae Y Y, Kim H Y 2009 Exp. Therm. Fluid Sci. 33 329Google Scholar

    [4]

    Saltanov E 2015 Ph. D. Dissertation (University of Ontario Institute of Technology

    [5]

    Kim J K, Jeon H K, Lee J S 2007 Nucl. Eng. Des. 237 1795Google Scholar

    [6]

    Kuang G, Ohadi M, Dessiatoun S 2008 HVACR Res. 14 861Google Scholar

    [7]

    Zhang S J, Xu X X, Liu C, Liu X X, Ru Z P, Dang C B 2020 Int. J. Heat Mass Transfer 149 119074Google Scholar

    [8]

    Wang L, Pan Y C, Lee J D, Wang Y, Fu B R, Pan C 2020 Int. J. Heat Mass Transfer 159 120136Google Scholar

    [9]

    Liu S H, Huang Y P, Liu G X, Wang J F, Leung L K H 2017 Int. J. Heat Mass Transfer 106 1144Google Scholar

    [10]

    Kim D E, Kim M H 2010 Nucl. Eng. Des. 240 3336Google Scholar

    [11]

    Kumar R, Nikam K, Jilte R 2020 Applied Computer Vision and Image Processing Advances in Intelligent Systems and Computing (Singapore: Springer

    [12]

    Ahmadi M H, Ghazvini M, Maddah H, Kahani M, Pourfarhang S, Pourfarhang A, Heris S Z 2020 Physica A 546 124008Google Scholar

    [13]

    Aghayari R, Maddah H, Ahmadi M H, Yan W M, Ghasemi N 2018 Energies 11 1190Google Scholar

    [14]

    Mensah R A, Jiang L, Asante-Okyere S, Xu Q, Jin C 2019 J. Therm. Anal. Calorim. 138 3055Google Scholar

    [15]

    Ye K, Zhang Y L, Yang L L, Zhao Y R, Li N, Xi C K 2019 Appl. Therm. Eng. 150 686Google Scholar

    [16]

    Zhu B, Zhu X, Xie J, Xu J L, Liu H 2021 J. Therm. Sci. 30 1751Google Scholar

    [17]

    Prasad K S R, Krishna V, Bharadwaj M S, Ponangi B R 2022 J. Heat Transfer 144 011802Google Scholar

    [18]

    Ma D, Zhou T, Chen J, Qi S, Shahzad M A, Xiao Z J 2017 Nucl. Eng. Des. 320 400Google Scholar

    [19]

    Chang W, Chu X, Fareed A F B S, Pandey S, Luo J Y, Weigand B, Laurien E 2018 Appl. Therm. Eng. 131 815Google Scholar

    [20]

    Sun F, Xie G, Li S 2021 Appl. Soft Comput. 102 107110Google Scholar

    [21]

    Sun F, Xie G, Song J, Li S L, Markides C N 2021 Appl. Therm. Eng. 194 117067Google Scholar

    [22]

    Jiang Y R, Hu P, Ibrahim A 2020 Int. J. Heat Fluid Flow 85 108650Google Scholar

    [23]

    Dang C B, Hihara E 2012 Int. J. Refrigeration 35 1130Google Scholar

  • [1] 宋天舒, 夏辉. 基于数值稳定型神经网络的Villain-Lai-Das Sarma方程的动力学标度行为研究. 物理学报, 2024, 73(16): 160501. doi: 10.7498/aps.73.20240852
    [2] 黄宇航, 陈理想. 基于未训练神经网络的分数傅里叶变换成像. 物理学报, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [3] 马锐垚, 王鑫, 李树, 勇珩, 上官丹骅. 基于神经网络的粒子输运问题高效计算方法. 物理学报, 2024, 73(7): 072802. doi: 10.7498/aps.73.20231661
    [4] 杨莹, 曹怀信. 量子混合态的两种神经网络表示. 物理学报, 2023, 72(11): 110301. doi: 10.7498/aps.72.20221905
    [5] 方波浪, 王建国, 冯国斌. 基于物理信息神经网络的光斑质心计算. 物理学报, 2022, 71(20): 200601. doi: 10.7498/aps.71.20220670
    [6] 李靖, 孙昊. 识别Z玻色子喷注的卷积神经网络方法. 物理学报, 2021, 70(6): 061301. doi: 10.7498/aps.70.20201557
    [7] 孙立望, 李洪, 汪鹏君, 高和蓓, 罗孟波. 利用神经网络识别高分子链在表面的吸附相变. 物理学报, 2019, 68(20): 200701. doi: 10.7498/aps.68.20190643
    [8] 魏德志, 陈福集, 郑小雪. 基于混沌理论和改进径向基函数神经网络的网络舆情预测方法. 物理学报, 2015, 64(11): 110503. doi: 10.7498/aps.64.110503
    [9] 李欢, 王友国. 一类非线性神经网络中噪声改善信息传输. 物理学报, 2014, 63(12): 120506. doi: 10.7498/aps.63.120506
    [10] 陈铁明, 蒋融融. 混沌映射和神经网络互扰的新型复合流密码. 物理学报, 2013, 62(4): 040301. doi: 10.7498/aps.62.040301
    [11] 李华青, 廖晓峰, 黄宏宇. 基于神经网络和滑模控制的不确定混沌系统同步. 物理学报, 2011, 60(2): 020512. doi: 10.7498/aps.60.020512
    [12] 赵海全, 张家树. 混沌通信系统中非线性信道的自适应组合神经网络均衡. 物理学报, 2008, 57(7): 3996-4006. doi: 10.7498/aps.57.3996
    [13] 王永生, 孙 瑾, 王昌金, 范洪达. 变参数混沌时间序列的神经网络预测研究. 物理学报, 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [14] 牛培峰, 张 君, 关新平. 基于遗传算法的统一混沌系统比例-积分-微分神经网络解耦控制研究. 物理学报, 2007, 56(5): 2493-2497. doi: 10.7498/aps.56.2493
    [15] 行鸿彦, 徐 伟. 混沌背景中微弱信号检测的神经网络方法. 物理学报, 2007, 56(7): 3771-3776. doi: 10.7498/aps.56.3771
    [16] 王瑞敏, 赵 鸿. 神经元传输函数对人工神经网络动力学特性的影响. 物理学报, 2007, 56(2): 730-739. doi: 10.7498/aps.56.730
    [17] 熊 涛, 常胜江, 申金媛, 张延炘. 用于可变比特率视频通信量预测的自适应训练及删剪算法. 物理学报, 2005, 54(4): 1931-1936. doi: 10.7498/aps.54.1931
    [18] 王耀南, 谭 文. 混沌系统的遗传神经网络控制. 物理学报, 2003, 52(11): 2723-2728. doi: 10.7498/aps.52.2723
    [19] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制. 物理学报, 2002, 51(11): 2463-2466. doi: 10.7498/aps.51.2463
    [20] 神经网络的自适应删剪学习算法及其应用. 物理学报, 2001, 50(4): 674-681. doi: 10.7498/aps.50.674
计量
  • 文章访问数:  1436
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-21
  • 修回日期:  2024-04-30
  • 上网日期:  2024-05-10
  • 刊出日期:  2024-06-20

/

返回文章
返回