搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子混合态的两种神经网络表示

杨莹 曹怀信

引用本文:
Citation:

量子混合态的两种神经网络表示

杨莹, 曹怀信

Two types of neural network representations of quantum mixed states

Yang Ying, Cao Huai-Xin
PDF
HTML
导出引用
  • 量子信息与人工智能是近年来的两个前沿研究领域, 取得了诸多改变传统科学的进展, 实现这两个领域的交叉融合成为科学家关注的热点问题. 尽管学者们在这方面已进行了许多探索, 借助它们模拟开放多体量子系统的稳态和动力学性质, 但是量子混合态的神经网络的精确表示问题仍待研究. 本文致力于量子混合态的神经网络表示问题. 借助两种神经网络架构, 构建了具有一般输入可观测量的神经网络量子混合拟态(NNQMVS) 与神经网络量子混合态(NNQMS), 分别探讨了它们的性质, 得到了张量积运算、局部酉运算下NNQMVS与NNQMS的相关结论. 为了量化给定混合态分别由规范化的NNQMVS与NNQMS逼近的能力, 分别定义了它由规范化NNQMVS 与NNQMS逼近的最佳逼近度, 给出了一般混合态能被规范化的NNQMVS与NNQMS表示的充要条件, 并探究了能用这两种神经网络架构表示的混合态的类型, 给出了相应的神经网络表示.
    Quantum information and artificial intelligence are the two most cutting-edge research fields in recent years, which have made a lot of progress in changing the traditional science. It has become a hot topic of research to realize the cross fusion of the two fields. Scholars have made many explorations in this field. For example, they have simulated the steady state and the dynamics of open quantum many-body systems. However, little attention has been paid to the problem of accurate representation of neural networks. In this paper, we focus on neural network representations of quantum mixed states. We first propose neural network quantum mixed virtual states (NNQMVS) and neural network quantum mixed states (NNQMS) with general input observables by using two neural network architectures, respectively. Then we explore their properties and obtain the related conclusions of NNQMVS and NNQMS under tensor product operation and local unitary operation.To quantify the approximation degree of normalized NNQMVS and NNQMS for a given mixed state, we define the best approximation degree by using normalized NNQMVS and NNQMS, and obtain the necessary and sufficient conditions for the representability of a general mixed state by using normalized NNQMVS and NNQMS. Moreover, we explore the types of mixed states that can be represented by these two neural network architectures and show their accurate neural network representations.
      通信作者: 曹怀信, caohx@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12001480, 11871318, 12271325, 11971283)、山西省应用基础研究项目(批准号: 201901D211461, 20210302123082)、山西省优秀博士来晋科研专项(批准号: QZX-2020001)和运城学院博士启动项目(批准号: YQ-2019021) 资助的课题
      Corresponding author: Cao Huai-Xin, caohx@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12001480, 11871318, 12271325, 11971283), the Applied Basic Research Program of Shanxi Province, China (Grant Nos. 201901D211461, 20210302123082), the Excellent Doctoral Research Project of Shanxi Province, China (Grant No. QZX-2020001), and the PhD Start-up Project of Yuncheng University (Grant No. YQ-2019021)
    [1]

    LeCun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar

    [2]

    Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S 2017 Nature 549 195Google Scholar

    [3]

    Ciliberto C, Herbster M, Ialongo A D, Pontil M, Rocchetto A, Severini S, Wossnig L 2018 Proc. R. Soc. A 474 20170551Google Scholar

    [4]

    Schollwöck U 2011 Ann. Phys. 326 96Google Scholar

    [5]

    Verstraete F, Murg V, Cirac J I 2008 Adv. Phys. 57 143Google Scholar

    [6]

    Schuch N, Wolf M M, Verstraete F, Cirac J I 2008 Phys. Rev. Lett. 100 040501Google Scholar

    [7]

    Ceperley D, Alder B 1986 Science 231 555Google Scholar

    [8]

    Loh E Y, Gubernatis J E, Scalettar R T, White S R, Scalapino D J, Sugar R L 1990 Phys. Rev. B 41 9301

    [9]

    Schuch N, Wolf M M, Verstraete F, Cirac J I 2007 Phys. Rev. Lett. 98 140506Google Scholar

    [10]

    Verstraete F, Wolf M M, Perez-Garcia D, Cirac J I 2006 Phys. Rev. Lett. 96 220601Google Scholar

    [11]

    Carleo G, Troyer M 2017 Science 355 602Google Scholar

    [12]

    程嵩, 陈靖, 王磊 2017 物理 46 416Google Scholar

    Cheng S, Chen J, Wang L 2017 Physics 46 416Google Scholar

    [13]

    蔡子 2017 物理 46 590Google Scholar

    Cai Z 2017 Physics 46 590Google Scholar

    [14]

    Ma Y C, Yung M H 2018 Npj Quantum Inform. 4 34Google Scholar

    [15]

    Gao J, Qiao L F, Jiao Z Q, Ma Y C, Hu C Q, Ren R J, Yang A L, Tang H, Yung M H, Jin X M 2018 Phys. Rev. Lett. 120 240501Google Scholar

    [16]

    Qiu P H, Chen X G, Shi Y W 2019 IEEE Access 7 94310Google Scholar

    [17]

    Deng D L, Li X P, Sarma S D 2017 Phys. Rev. B 96 195145Google Scholar

    [18]

    Deng D L, Li X P, Sarma S D 2017 Phys. Rev. X 7 021021

    [19]

    Deng D L 2018 Phys. Rev. Lett. 120 240402Google Scholar

    [20]

    Gao X, Duan L M 2017 Nat. Commun. 8 662Google Scholar

    [21]

    Lu S, Gao X, Duan L M 2019 Phys. Rev. B 99 155136

    [22]

    Gao X, Zhang Z Y, Duan L M 2018 Sci. Adv. 4 eaat9004Google Scholar

    [23]

    Carleo G, Nomura Y, Imada M 2018 Nat. Commun. 9 5322Google Scholar

    [24]

    Glasser I, Pancotti N, August M, Rodriguez I D, Cirac J I 2018 Phys. Rev. X 8 011006

    [25]

    Jia Z A, Yi B, Zhai R, Wu Y C, Guo G C, Guo G P 2019 Adv. Quantum. Technol. 2 1800077Google Scholar

    [26]

    Hu L, Wu S H, Cai W Z, Ma Y W, Mu X J, Xu Y, Wang H Y, Song Y P, Deng D L, Zou C L, Sun L Y 2019 Sci. Adv. 5 2761Google Scholar

    [27]

    Yang Y, Cao H X, Zhang Z J 2020 Sci. China-Phys. Mech. Astron. 63 210312Google Scholar

    [28]

    Sarma S D, Deng D L, Duan L M 2019 Phys. Today 72 48

    [29]

    Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Maranto L V, Zdeborová L 2019 Rev. Mod. Phys. 91 045002Google Scholar

    [30]

    Lu S R, Duan L M, Deng D L 2020 Phys. Rev. Res. 2 033212Google Scholar

    [31]

    杨光, 刘琦, 聂敏, 刘原华, 张美玲 2022 物理学报 71 100301Google Scholar

    Yang G, Liu Q, Nie M, Liu Y H, Zhang M L 2022 Acta Phys. Sin. 71 100301Google Scholar

    [32]

    陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴 2022 物理学报 71 220301Google Scholar

    Chen Y P, Liu J Y, Zhu J L, Fang W, Wang Q 2022 Acta Phys. Sin. 71 220301Google Scholar

    [33]

    Li W K, Lu S, Deng D L 2021 Sci. China-Phys. Mech. Astron. 64 100312Google Scholar

    [34]

    Li W K, Deng D L 2022 Sci. China-Phys. Mech. Astron. 65 220301Google Scholar

    [35]

    Torlai G, Melko R G 2018 Phys. Rev. Lett. 120 240503Google Scholar

    [36]

    Hartmann M J, Carleo G 2019 Phys. Rev. Lett. 122 250502Google Scholar

    [37]

    Vicentini F, Biella A, Regnault N, Ciuti C 2019 Phys. Rev. Lett. 122 250503Google Scholar

    [38]

    Nagy A, Savona V 2019 Phys. Rev. Lett. 122 250501

    [39]

    Yoshioka N, Hamazaki R 2019 Phys. Rev. B 99 214306Google Scholar

  • 图 1  NNQMVS相匹配的人工神经网络

    Fig. 1.  Artificial neural network encoding an NNQMVS.

    图 2  含参数$\varOmega = (0, b, W)$的NNQMVS对应的量子人工神经网络

    Fig. 2.  Quantum artificial neural network of NNQMVS with parameter $\varOmega = (0, b, W)$.

    图 3  NNQMS相匹配的深度神经网络

    Fig. 3.  Deep neural network encoding an NNQMS.

    图 4  $ |0\rangle\langle 0 | $ 的两种神经网络表示

    Fig. 4.  Two neural network representation of the state $ |0\rangle\langle 0 | $.

    图 5  $ |1\rangle\langle 1 | $ 的两种神经网络表示

    Fig. 5.  Two neural network representation of the state $ |1\rangle\langle 1 | $.

    图 6  $p_1 |0\rangle\langle 0 |+p_2 |1\rangle\langle 1 |(p_1, p_2 > 0,\; p_1+p_2 = 1)$的两种神经网络表示

    Fig. 6.  Two neural network representation of the state $p_1 |0\rangle\langle 0 |+p_2 |1\rangle\langle 1 |(p_1, p_2 > 0,\; p_1+p_2 = 1)$.

    图 7  $\rho$ 的反对偶的NNQMVS神经网络表示 (a) N = 2; (b) N = 3; (c) N = 4

    Fig. 7.  Anti-dual NNQMVS neural network representation of the state $ \rho$: (a) N = 2; (b) N = 3; (c) N = 4.

    图 8  ρ的NNQMVS 神经网络表示

    Fig. 8.  NNQMVS neural network representation of the state ρ.

    图 9  ρ的NNQMS神经网络表示

    Fig. 9.  NNQMS neural network representation of the state ρ

    图 10  $ U\rho U^{\dagger} $的两种神经网络表示

    Fig. 10.  Two neural network representation of the state $ U\rho U^{\dagger} $.

    图 11  $ U\rho U^{\dagger} $的两种神经网络表示

    Fig. 11.  Two neural network representation of the state $ U\rho U^{\dagger} $.

    图 12  $ U\rho U^{\dagger} $ 的两种神经网络表示

    Fig. 12.  Two neural network representation of the state $ U\rho U^{\dagger} $.

    图 13  $ U\rho U^{\dagger} $ 的两种神经网络表示

    Fig. 13.  Two neural network representation of the state $ U\rho U^{\dagger} $.

    图 14  $ U\rho U^{\dagger} $的两种神经网络表示

    Fig. 14.  Two neural network representation of the state $ U\rho U^{\dagger} $.

    图 15  $ U\rho U^{\dagger} $的两种神经网络表示

    Fig. 15.  Two neural network representation of the state $ U\rho U^{\dagger} $.

    图 16  $ U\rho U^{\dagger} $的两种神经网络表示

    Fig. 16.  Two neural network representation of the state $ U\rho U^{\dagger} $.

    图 17  $ U\rho U^{\dagger} $的两种神经网络表示

    Fig. 17.  Two neural network representation of the state $ U\rho U^{\dagger} $.

  • [1]

    LeCun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar

    [2]

    Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S 2017 Nature 549 195Google Scholar

    [3]

    Ciliberto C, Herbster M, Ialongo A D, Pontil M, Rocchetto A, Severini S, Wossnig L 2018 Proc. R. Soc. A 474 20170551Google Scholar

    [4]

    Schollwöck U 2011 Ann. Phys. 326 96Google Scholar

    [5]

    Verstraete F, Murg V, Cirac J I 2008 Adv. Phys. 57 143Google Scholar

    [6]

    Schuch N, Wolf M M, Verstraete F, Cirac J I 2008 Phys. Rev. Lett. 100 040501Google Scholar

    [7]

    Ceperley D, Alder B 1986 Science 231 555Google Scholar

    [8]

    Loh E Y, Gubernatis J E, Scalettar R T, White S R, Scalapino D J, Sugar R L 1990 Phys. Rev. B 41 9301

    [9]

    Schuch N, Wolf M M, Verstraete F, Cirac J I 2007 Phys. Rev. Lett. 98 140506Google Scholar

    [10]

    Verstraete F, Wolf M M, Perez-Garcia D, Cirac J I 2006 Phys. Rev. Lett. 96 220601Google Scholar

    [11]

    Carleo G, Troyer M 2017 Science 355 602Google Scholar

    [12]

    程嵩, 陈靖, 王磊 2017 物理 46 416Google Scholar

    Cheng S, Chen J, Wang L 2017 Physics 46 416Google Scholar

    [13]

    蔡子 2017 物理 46 590Google Scholar

    Cai Z 2017 Physics 46 590Google Scholar

    [14]

    Ma Y C, Yung M H 2018 Npj Quantum Inform. 4 34Google Scholar

    [15]

    Gao J, Qiao L F, Jiao Z Q, Ma Y C, Hu C Q, Ren R J, Yang A L, Tang H, Yung M H, Jin X M 2018 Phys. Rev. Lett. 120 240501Google Scholar

    [16]

    Qiu P H, Chen X G, Shi Y W 2019 IEEE Access 7 94310Google Scholar

    [17]

    Deng D L, Li X P, Sarma S D 2017 Phys. Rev. B 96 195145Google Scholar

    [18]

    Deng D L, Li X P, Sarma S D 2017 Phys. Rev. X 7 021021

    [19]

    Deng D L 2018 Phys. Rev. Lett. 120 240402Google Scholar

    [20]

    Gao X, Duan L M 2017 Nat. Commun. 8 662Google Scholar

    [21]

    Lu S, Gao X, Duan L M 2019 Phys. Rev. B 99 155136

    [22]

    Gao X, Zhang Z Y, Duan L M 2018 Sci. Adv. 4 eaat9004Google Scholar

    [23]

    Carleo G, Nomura Y, Imada M 2018 Nat. Commun. 9 5322Google Scholar

    [24]

    Glasser I, Pancotti N, August M, Rodriguez I D, Cirac J I 2018 Phys. Rev. X 8 011006

    [25]

    Jia Z A, Yi B, Zhai R, Wu Y C, Guo G C, Guo G P 2019 Adv. Quantum. Technol. 2 1800077Google Scholar

    [26]

    Hu L, Wu S H, Cai W Z, Ma Y W, Mu X J, Xu Y, Wang H Y, Song Y P, Deng D L, Zou C L, Sun L Y 2019 Sci. Adv. 5 2761Google Scholar

    [27]

    Yang Y, Cao H X, Zhang Z J 2020 Sci. China-Phys. Mech. Astron. 63 210312Google Scholar

    [28]

    Sarma S D, Deng D L, Duan L M 2019 Phys. Today 72 48

    [29]

    Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Maranto L V, Zdeborová L 2019 Rev. Mod. Phys. 91 045002Google Scholar

    [30]

    Lu S R, Duan L M, Deng D L 2020 Phys. Rev. Res. 2 033212Google Scholar

    [31]

    杨光, 刘琦, 聂敏, 刘原华, 张美玲 2022 物理学报 71 100301Google Scholar

    Yang G, Liu Q, Nie M, Liu Y H, Zhang M L 2022 Acta Phys. Sin. 71 100301Google Scholar

    [32]

    陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴 2022 物理学报 71 220301Google Scholar

    Chen Y P, Liu J Y, Zhu J L, Fang W, Wang Q 2022 Acta Phys. Sin. 71 220301Google Scholar

    [33]

    Li W K, Lu S, Deng D L 2021 Sci. China-Phys. Mech. Astron. 64 100312Google Scholar

    [34]

    Li W K, Deng D L 2022 Sci. China-Phys. Mech. Astron. 65 220301Google Scholar

    [35]

    Torlai G, Melko R G 2018 Phys. Rev. Lett. 120 240503Google Scholar

    [36]

    Hartmann M J, Carleo G 2019 Phys. Rev. Lett. 122 250502Google Scholar

    [37]

    Vicentini F, Biella A, Regnault N, Ciuti C 2019 Phys. Rev. Lett. 122 250503Google Scholar

    [38]

    Nagy A, Savona V 2019 Phys. Rev. Lett. 122 250501

    [39]

    Yoshioka N, Hamazaki R 2019 Phys. Rev. B 99 214306Google Scholar

  • [1] 宋天舒, 夏辉. 基于数值稳定型神经网络的Villain-Lai-Das Sarma方程的动力学标度行为研究. 物理学报, 2024, 73(16): 160501. doi: 10.7498/aps.73.20240852
    [2] 周文力, 卓伟伟, 蒋依然, 马文杰, 董宝君. 水平管内超临界R1234ze(E)冷却传热性能的神经网络预测. 物理学报, 2024, 73(12): 120702. doi: 10.7498/aps.73.20240283
    [3] 黄宇航, 陈理想. 基于未训练神经网络的分数傅里叶变换成像. 物理学报, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [4] 马锐垚, 王鑫, 李树, 勇珩, 上官丹骅. 基于神经网络的粒子输运问题高效计算方法. 物理学报, 2024, 73(7): 072802. doi: 10.7498/aps.73.20231661
    [5] 方波浪, 王建国, 冯国斌. 基于物理信息神经网络的光斑质心计算. 物理学报, 2022, 71(20): 200601. doi: 10.7498/aps.71.20220670
    [6] 李靖, 孙昊. 识别Z玻色子喷注的卷积神经网络方法. 物理学报, 2021, 70(6): 061301. doi: 10.7498/aps.70.20201557
    [7] 孙立望, 李洪, 汪鹏君, 高和蓓, 罗孟波. 利用神经网络识别高分子链在表面的吸附相变. 物理学报, 2019, 68(20): 200701. doi: 10.7498/aps.68.20190643
    [8] 刘晋, 缪波, 贾欣燕, 樊代和. 基于Hardy-type佯谬的混合态高概率量子非局域关联检验. 物理学报, 2019, 68(23): 230302. doi: 10.7498/aps.68.20191125
    [9] 魏德志, 陈福集, 郑小雪. 基于混沌理论和改进径向基函数神经网络的网络舆情预测方法. 物理学报, 2015, 64(11): 110503. doi: 10.7498/aps.64.110503
    [10] 李欢, 王友国. 一类非线性神经网络中噪声改善信息传输. 物理学报, 2014, 63(12): 120506. doi: 10.7498/aps.63.120506
    [11] 陈铁明, 蒋融融. 混沌映射和神经网络互扰的新型复合流密码. 物理学报, 2013, 62(4): 040301. doi: 10.7498/aps.62.040301
    [12] 李华青, 廖晓峰, 黄宏宇. 基于神经网络和滑模控制的不确定混沌系统同步. 物理学报, 2011, 60(2): 020512. doi: 10.7498/aps.60.020512
    [13] 赵海全, 张家树. 混沌通信系统中非线性信道的自适应组合神经网络均衡. 物理学报, 2008, 57(7): 3996-4006. doi: 10.7498/aps.57.3996
    [14] 王永生, 孙 瑾, 王昌金, 范洪达. 变参数混沌时间序列的神经网络预测研究. 物理学报, 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [15] 牛培峰, 张 君, 关新平. 基于遗传算法的统一混沌系统比例-积分-微分神经网络解耦控制研究. 物理学报, 2007, 56(5): 2493-2497. doi: 10.7498/aps.56.2493
    [16] 行鸿彦, 徐 伟. 混沌背景中微弱信号检测的神经网络方法. 物理学报, 2007, 56(7): 3771-3776. doi: 10.7498/aps.56.3771
    [17] 王瑞敏, 赵 鸿. 神经元传输函数对人工神经网络动力学特性的影响. 物理学报, 2007, 56(2): 730-739. doi: 10.7498/aps.56.730
    [18] 王耀南, 谭 文. 混沌系统的遗传神经网络控制. 物理学报, 2003, 52(11): 2723-2728. doi: 10.7498/aps.52.2723
    [19] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制. 物理学报, 2002, 51(11): 2463-2466. doi: 10.7498/aps.51.2463
    [20] 神经网络的自适应删剪学习算法及其应用. 物理学报, 2001, 50(4): 674-681. doi: 10.7498/aps.50.674
计量
  • 文章访问数:  3361
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-02
  • 修回日期:  2023-02-08
  • 上网日期:  2023-03-28
  • 刊出日期:  2023-06-05

/

返回文章
返回