搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于神经网络方法研究超重核的稳定性和衰变性质

陈海军 盛浩文 黄文豪 吴彬琪 赵天亮 包小军

引用本文:
Citation:

基于神经网络方法研究超重核的稳定性和衰变性质

陈海军, 盛浩文, 黄文豪, 吴彬琪, 赵天亮, 包小军

Research on the stability and decay properties of superheavy nuclei based on neural network methods

Chen Haijun, Sheng Haowen, Huang Wenhao, Wu Binqi, Zhao Tianliang, Bao Xiaojun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文提出了一种用于计算原子核α衰变能(Qα)的类液滴模型公式。为了改进类液滴模型公式计算Qα的精度,我们发展了神经网络结合类液滴模型公式的方法计算了原子核的Qα值。通过分别对比类液滴模型计算的Qα值和神经网络结合类液滴模型公式的方法计算的Qα值与实验测量值的均方根偏差(RMSD),发现类液滴模型计算的Qα值与实验值之间的均方根偏差(RMSD)从663.5keV下降到神经网络结合类液滴模型公式的89.2keV。进而,我们采用改进的Qα结合统一衰变公式计算了α衰变的半衰期。虽然没有直接考虑原子核的壳效应,但神经网络方法预测出了相应的超重核区双幻核的位置,这与目前理论预测的超重双幻的位置非常接近,从而给出了超重核区α衰变的稳定区域。这进一步证实了超重核稳定岛的存在。
    Objective: This study aims to develop a highly accurate method for predicting α-decay energies (Qα) of superheavy nuclei (SHN) and to identify the region of enhanced stability (the "island of stability") based on α-decay properties. Improving the precision of Qα calculations is crucial for reliably predicting α-decay half-lives, which are essential for identifying newly synthesized superheavy elements. Methods: A modified Liquid-Drop Model (LDM) formula for calculating Qα is proposed, eliminating explicit dependence on magic numbers to enhance universality. However, the initial LDM formula alone yields a high root-mean-square deviation (RMSD) of 663.5 keV when compared to experimental Qα values from the AME2016 database for 369 nuclei with Z ≥ 82. To significantly improve accuracy, a neural network (NN) approach is integrated with the LDM formula. A feedforward backpropagation (BP) neural network with a 2-21-1 architecture (2 input neurons: proton number Z and mass number A; 21 hidden neurons; 1 output neuron: , the correction term is developed. The network is trained using the Levenberg-Marquardt algorithm on a dataset of 369 nuclei (319 training, 50 validation). The final Qα prediction is given by QαNN = QαEq.(2) +δQα. The Unified Decay Law (UDL) formula (Eq. 8) is then used to calculate α-decay half-lives (T1/2), both with and without NN correction (denoted UDL and UDLNN).
  • [1]

    D. T. Akrawy and D. N. Poenaru, J. Phys. G: Nucl. Part. Phys. 44 (2017) 105105.

    [2]

    M. R. Pahlavani and M. Joharifard, Phys. Rev. C 99 (2019) 044601.

    [3]

    J. G. Deng and H. F. Zhang, Phys. Rev. C 102 (2020) 044314.

    [4]

    J. Khuyagbaatar, F. P. Heßberger, S. Hofmann, D. Ackermann, H. G. Burkhard, S. Heinz, B. Kindler, I. Kojouharov, B. Lommel, R. Mann, J. Maurer, and K. Nishio, Phys. Rev. C 102 (2020) 044312.

    [5]

    E. Olesen and W. Nazarewicz, Phys. Rev. C 99 (2019) 014317.

    [6]

    T. L. Zhao and X. J. Bao, Phys. Rev. C 98 (2018) 064307.

    [7]

    Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, R. N. Sagaidak, I. V. Shirokovsky, Yu. S. Tsyganov, A. A. Voinov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, K. Subotic, V. I. Zagrebaev, G. K. Vostokin, and M. G. Itkis, Phys. Rev. C 74 (2006) 044602.

    [8]

    Inauguration of the factory of superheavy elements, http://www.jinr.ru/posts/inauguration-of-the-factory-of-superheavy-elements/, accessed: 2019-05-25.

    [9]

    S. Hofmann and G. Mnzenberg, Rev. Mod. Phys. 72 (2000) 733.

    [10]

    A. Sobiczewski and K. Pomorski, Prog. Part. Nucl. Phys. 58 (2007) 292.

    [11]

    Yu. Ts. Oganessian, A. Sobiczewski, and G. M. Ter-Akopian, Phys. Scr. 92 (2017) 023003.

    [12]

    Yu. Ts. Oganessian and V. K. Utyonkov, Nucl. Phys. A 944 (2015) 62.

    [13]

    P. Mller, J. R. NIX, K.-L. KRATZ, At. Data Nucl. Data Tables 66 (1997) 131.

    [14]

    R. R. Chasman, I. Ahmad, A. M. Friedman, and J. R. Erskine, Rev. Mod. Phys. 49 (1977) 833.

    [15]

    M. G. Mayer, Phys. Rev. 74 (1948) 235

    [16]

    O. Haxel, J. H. D. Jensen, and H. E. Suess, Phys. Rev. 75 (1949) 1766.

    [17]

    M. G. Mayer, Phys. Rev. 75 (1949) 1969.

    [18]

    H. Koura, T. Tachibana, M. Uno and M. Yamada, Prog. Theor. Phys 113 (2005) 305.

    [19]

    N. Wang and M. Liu, Phys. Rev. C 81 (2010) 044322.

    [20]

    P. Mller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tables 109 (2016) 1.

    [21]

    S. Goriely, N. Chamel and J. M. Pearson, Phys. Rev. Lett. 102 (2009) 152503.

    [22]

    S. Goriely, S. Hilaire, M. Girod and S. Péru, Phys. Rev. Lett. 102 (2009) 242501.

    [23]

    P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 82 (2010) 054319.

    [24]

    T. Dong and Z. Ren, Phys. Rev. C 82 (2010) 034320.

    [25]

    M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, X. Xu, Chin. Phys. C 41 (2017) 030003.

    [26]

    H. Geiger and J. Nuttall, London Edinburgh Dublin Philos. Mag. J. Sci 22 (1911) 613.

    [27]

    Y. Z. Wang, S. J. Wang, Z. Y. Hou, and J. Z. Gu, Phys. Rev. C 92 (2015) 064301.

    [28]

    S. Gazula, J. Clark, and H. Bohr, Nucl. Phys. A 540 (1992) 1.

    [29]

    K. Gernoth, J. Clark, J. Prater, and H. Bohr, Phys. Lett. B 300 (1993) 1.

    [30]

    K. Gernoth and J. Clark, Neural Networks 8 (1995) 291.

    [31]

    S. Athanassopoulos, E. Mavrommatis, K. A. Gernoth, and J. W. Clark, Nucl. Phys. A 743 (2004)222.

    [32]

    T. Bayram, S. Akkoyun, and S. O. Kara, Ann. Nucl. Energy 63 (2014) 172.

    [33]

    R. Utama and J. Piekarewicz, Phys. Rev. C 96 (2017) 044308.

    [34]

    R. Utama, J. Piekarewicz, and H. B. Prosper, Phys. Rev. C 93 (2016) 014311.

    [35]

    H. F. Zhang, L. H. Wang, J. P. Yin, P. H. Chen, and H. F. Zhang, J. Phys. G 44 (2017) 045110.

    [36]

    Z. M. Niu, H. Z. Liang, Phys. Lett. B 778 (2018) 48.

    [37]

    K. Levenberg, Quart. Appl. Math 2 (1944) 164.

    [38]

    D. Marquardt, SIAM J. Appl. Math 11 (1963) 431.

    [39]

    W. Press, S. Teukolsky, W. Vetterling and F. Flannery, 678 (1992)

    [40]

    C. Xu and Z. Z. Ren, Phy. Rev. C 74 (2006) 014304.

    [41]

    X. J. Bao, H. F. Zhang, H. F. Zhang, G. Royer and J. Q. Li, Nucl. Phys. A 921 (2014) 85.

    [42]

    W. H. Long, J. Meng and S. G. Zhou, Phys. Rev. C 65 (2002) 047306.

    [43]

    C. Qi, F. R. Xu, R. J. Liotta and R. Wyss, Phys. Rev. Lett. 103 (2009) 072501.

    [44]

    C. Qi, F. R. Xu, R. J. Liotta, R. Wyss, M. Y. Zhang, C. Asawatangtrakuldee, and D. Hu Phys. Rev. C 80 (2009) 044326.

    [45]

    D. D. Ni, Z. Z. Ren, T. K. Dong and C. Xu, Phys. Rev. C 78 (2008) 044301.

    [46]

    A. Parkhomenko and A. Sobiczewski, Acta Phys. Pol. B 36 (2005) 3095.

    [47]

    G. Royer, J. Phys. G 26 (2000) 1149.

    [48]

    T. L. Zhao, X. J. Bao and S. Q. Guo, J. Phys. G 45 (2018) 025106.

    [49]

    G. Audi, F.G. Kondev, M. Wang, W.J. Huang, and S. Naimi, Chin. Phys. C 41 (2017) 030001.

    [50]

    Z. Y. Zhang, H. B. Yang, M. H. Huang, Z. G. Gan, C. X. Yuan, C. Qi, A. N. Andreyev, M. L. Liu, L. Ma, M. M. Zhang, Y. L. Tian, Y. S. Wang, J. G. Wang, C. L. Yang, G. S. Li, Y. H. Qiang, W. Q. Yang, R. F. Chen, H. B. Zhang, Z.W. Lu, X.X. Xu, L. M. Duan, H.R. Yang, W.X. Huang, Z. Liu, X.H. Zhou, Y. H. Zhang, H. S. Xu, N. Wang, H. B. Zhou, X. J. Wen, S. Huang, W. Hua, L. Zhu, X. Wang, Y. C. Mao, X. T. He, S. Y. Wang, W. Z. Xu, H. W. Li, Z. Z. Ren, and S. G. Zhou, Phys. Rev. Lett. 126 (2021) 152502.

    [51]

    N. Wang, M. Liu, X. Z. Wu, J. Meng, Phys. Lett. B 734 (2014) 215.

    [52]

    P. Mller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tables 109 (2016) 1.

    [53]

    Y. T. Oganessian, A. Sobiczewski and G. M. Ter-Akopian, Phys. Scr 92 (2017) 023003.

    [54]

    N. N. Ma, H. F. Zhang, X. J. Bao, and H. F. Zhang, Chin. Phys. C 43 (2019) 0441

  • [1] 田文静, 杨宗谕, 许敏, 龙婷, 何小雪, 柯锐, 杨硕苏, 余德良, 石中兵, 高喆. 光谱诊断中神经网络快速分析模型及外推方法. 物理学报, doi: 10.7498/aps.74.20241739
    [2] 魏凯文, 尚天帅, 田榕赫, 杨东, 李春娟, 陈军, 李剑, 黄小龙, 朱佳丽. 基于神经网络方法研究β衰变释放粒子的平均能量数据. 物理学报, doi: 10.7498/aps.74.20250655
    [3] 邢凤竹, 乐先凯, 王楠, 王艳召. Z = 118—120超重核α衰变性质的研究. 物理学报, doi: 10.7498/aps.74.20240907
    [4] 马锐垚, 王鑫, 李树, 勇珩, 上官丹骅. 基于神经网络的粒子输运问题高效计算方法. 物理学报, doi: 10.7498/aps.73.20231661
    [5] 张凯林, 韩胜贤, 岳生俊, 刘作业, 胡碧涛. 强激光场对原子核α衰变的影响. 物理学报, doi: 10.7498/aps.73.20231627
    [6] 焦宝宝. 基于原子核密度的核电荷半径新关系. 物理学报, doi: 10.7498/aps.72.20230126
    [7] 方波浪, 王建国, 冯国斌. 基于物理信息神经网络的光斑质心计算. 物理学报, doi: 10.7498/aps.71.20220670
    [8] 黄宇航, 陈理想. 基于未训练神经网络的分数傅里叶变换成像. 物理学报, doi: 10.7498/aps.73.20240050
    [9] 魏德志, 陈福集, 郑小雪. 基于混沌理论和改进径向基函数神经网络的网络舆情预测方法. 物理学报, doi: 10.7498/aps.64.110503
    [10] 李欢, 王友国. 一类非线性神经网络中噪声改善信息传输. 物理学报, doi: 10.7498/aps.63.120506
    [11] 陈铁明, 蒋融融. 混沌映射和神经网络互扰的新型复合流密码. 物理学报, doi: 10.7498/aps.62.040301
    [12] 张蔚泓, 牛中明, 王枫, 龚孝波, 孙保华. 宇宙核时钟不确定度的研究. 物理学报, doi: 10.7498/aps.61.112601
    [13] 李华青, 廖晓峰, 黄宏宇. 基于神经网络和滑模控制的不确定混沌系统同步. 物理学报, doi: 10.7498/aps.60.020512
    [14] 赵海全, 张家树. 混沌通信系统中非线性信道的自适应组合神经网络均衡. 物理学报, doi: 10.7498/aps.57.3996
    [15] 王永生, 孙 瑾, 王昌金, 范洪达. 变参数混沌时间序列的神经网络预测研究. 物理学报, doi: 10.7498/aps.57.6120
    [16] 黄明辉, 甘再国, 范红梅, 苏朋源, 马 龙, 周小红, 李君清. 超重核合成时的驱动势与热熔合反应截面. 物理学报, doi: 10.7498/aps.57.1569
    [17] 王瑞敏, 赵 鸿. 神经元传输函数对人工神经网络动力学特性的影响. 物理学报, doi: 10.7498/aps.56.730
    [18] 王耀南, 谭 文. 混沌系统的遗传神经网络控制. 物理学报, doi: 10.7498/aps.52.2723
    [19] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制. 物理学报, doi: 10.7498/aps.51.2463
    [20] 神经网络的自适应删剪学习算法及其应用. 物理学报, doi: 10.7498/aps.50.674
计量
  • 文章访问数:  219
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-11

/

返回文章
返回