搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于神经网络方法研究超重核的稳定性和衰变性质

陈海军 盛浩文 黄文豪 吴彬琪 赵天亮 包小军

引用本文:
Citation:

基于神经网络方法研究超重核的稳定性和衰变性质

陈海军, 盛浩文, 黄文豪, 吴彬琪, 赵天亮, 包小军

Research on stability and decay properties of superheavy nuclei based on neural network method

CHEN Haijun, SHENG Haowen, HUANG Wenhao, WU Binqi, ZHAO Tianliang, BAO Xiaojun
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文提出了一种用于计算原子核α衰变能($ {Q}_{\alpha } $)的类液滴模型公式. 为了改进类液滴模型公式计算$ {Q}_{\alpha } $的精度, 我们发展了神经网络结合类液滴模型公式的方法, 计算了原子核的$ {Q}_{\alpha } $值. 通过分别对比类液滴模型计算的$ {Q}_{\alpha } $值和神经网络结合类液滴模型公式的方法计算的$ {Q}_{\alpha } $值与实验测量值的均方根偏差(RMSD), 发现类液滴模型计算的$ {Q}_{\alpha } $值与实验值之间的RMSD从663.5 keV下降到神经网络结合类液滴模型公式的89.2 keV. 进而采用改进的$ {Q}_{\alpha } $结合统一衰变公式计算了α衰变的半衰期. 虽然没有直接考虑原子核的壳效应, 但神经网络方法预测出了相应的超重核区双幻核的位置, 这与目前理论预测的超重双幻的位置非常接近, 从而给出了超重核区α衰变的稳定区域, 进一步证实了超重核稳定岛的存在.
    This study aims to develop a highly accurate method of predicting α-decay energy (Qα) of superheavy nuclei (SHN) and to identify the region of enhanced stability (the “island of stability”) based on α-decay properties. Improving the accuracy of Qα calculations is crucial for reliably predicting α-decay half-lives, which are essential for identifying newly synthesized superheavy elements.A modified liquid-drop model (LDM) formula for calculating Qα is proposed, eliminating explicit dependence on magic numbers to improve universality. However, the initial LDM formula alone yields a high root-mean-square deviation (RMSD) of 663.5 keV compared with experimental Qα values from the AME2016 database for 369 nuclei with Z ≥ 82. In order to significantly improve accuracy, a neural network (NN) method is combined with the LDM formula. For a feedforward backpropagation (BP) neural network with a 2-21-1 architecture (2 input neurons: proton number Z and mass number A; 21 hidden neurons; 1 output neuron), the correction term $ \text{δ}{\text{Q}}_{\text{α}} $ is developed. The network is trained using the Levenberg-Marquardt algorithm on a dataset of 369 nuclei (319 training, 50 validation). The final Qα prediction is given by $ Q_\alpha ^{{\text{NN}}} = Q_\alpha ^{{\text{Eq}}{\text{. (2)}}} + \delta Q_\alpha ^{} $. The unified decay law (UDL) formula is then used to calculate α-decay half-lives (T1/2), with and without NN correction (denoted as UDL and UDLNN). The main results obtained are listed below.1) Improved Qα accuracy: The NN correction dramatically reduces the RMSD between calculated and experimental Qα values from 663.5 keV (LDM alone) to 89.2 keV.2) Capturing shell effects: Remarkably, although there is no explicit input of nuclear shell information, the NN-corrected Qα predictions clearly reproduce known shell structures, including the expected shell closure near N = 184 for superheavy nuclei. This is evident in the systematic lowering of predicted Qα values (implying increased stability) around the predicted doubly magic nucleus 298Fl (Z = 114, N = 184) and other known shell closures (e.g., N = 152, N = 162).3) Half-life predictions: Using the NN-corrected Qα in the UDL formula (UDLNN) further refines T1/2 predictions, reducing the RMSD from 0.631 (UDL alone) to 0.423. The method reliably reproduces experimental half-lives and shell-related features, such as a significant increase in T1/2 near shell closure (e.g. N = 126) and odd-A/odd-odd nuclei due to blocking effects.4) Validation: Predictions for recently synthesized neutron-deficient uranium isotopes 214,216,218U agree well with new experimental data of Qα and T1/2. Predictions for Fl isotopic chains also show good agreement with experimental trends.5) Stability island prediction: Maps of predicted Qα and T1/2 in the superheavy region consistently identify minimum value (indicating maximum stability) near the theoretically predicted doube magic nucleus 298Fl. A potential secondary stability center near Z = 126 and N = 228 is suggested, but further verification is needed. The longest predicted region of T1/2 coincides with the N = 184 shell closure.The conclusions drawn from the above findings are as follows. Integrating a neural network with a modified liquid-drop model formula provides a powerful and accurate method for predicting α-decay energies (Qα) of heavy and superheavy nuclei. The NN successfully learns and corrects complex shell effects implicitly, significantly improving prediction accuracy (RMSD reduced by ~85%). By combining the UDL formula, this method yields reliable α-decay half-lives. The results strongly confirm the existence and location of the predicted "island of stability" centered on the double magic nucleus 298Fl, providing valuable theoretical guidance for future experiments on the synthesis and identification of superheavy elements.
  • 图 1  由两个输入神经元、一个隐藏层和一个输出神经元组成的前馈神经网络

    Fig. 1.  Feedforward neural network consisting of two input neurons, a hidden layer and an output neuron.

    图 2  α衰变能量的实验值与理论值之差

    Fig. 2.  Difference between experimental and theoretical values of α decay energy.

    图 3  Po, Th, Rf同位素α衰变能和半衰期的理论结果与实验值的比较

    Fig. 3.  Comparison of theoretical results and experimental values for Po, Th, Rf isotope $ \mathrm{\alpha } $ decay energy and half-life.

    图 4  Fl同位素$ \alpha $衰变能和半衰期的理论结果与实验值比较

    Fig. 4.  Comparison of theoretical results and experimental values for Fl isotope $ \alpha $ecay energy and half-life.

    图 5  利用(2)式(左)和神经网络模型修正(右)预测超重核$ \alpha $衰变能量

    Fig. 5.  Prediction of $ \alpha $ decay energy of superheavy nuclei using Eq. (2)(left) and neural network model correction (right).

    图 6  利用UDL公式和UDLNN计算$ \alpha $衰变半衰期

    Fig. 6.  Calculated $ \alpha $ decay half-life using the UDL formula and the UDLNN.

    表 1  其他文献$ \alpha $衰变能和半衰期与本文工作的计算结果进行了比较

    Table 1.  The $ \alpha $ decay energy and half-life of other reference are compared with the calculation results of the work in this paper.

    $ {Q}_{\alpha }/\mathrm{M}\mathrm{e}\mathrm{V} $
    同位素 文献[49] (2)式 NN 文献[51] 文献[52]
    214U 8.696 10.054 8.865 9.008 8.45
    216U 8.532 10.047 8.587 8.532 8.36
    218U 8.773 9.897 8.795 8.801 8.51
    $ {T}_{1/2}/\mathrm{m}\mathrm{s} $
    同位素 文献[45] UDL UDLNN
    214U 0.52+0.63 –0.21 0.77 0.40
    216U 2.25+0.95 –0.4 2.12 1.93
    218U 0.65+0.08 –0.07 0.34 0.40
    下载: 导出CSV

    表 2  母核质子数为Z = 120的同位素$ \alpha $衰变链的预测. 第1列为母核, 第2列为文献[49]计算的$ \alpha $衰变能量, 第3列为(2)式计算的$ \alpha $衰变能量, 第4列为神经网络学习后的衰变能量, 第5列为使用UDL公式计算的$ \alpha $衰变半衰期, 第6列为使用神经网络学习后的$ \alpha $衰变半衰期

    Table 2.  Prediction of the $ \alpha $ decay chains of isotopes with proton number Z = 120 in the parent nucleus. The first column in the table shows the parent nucleus, the second column shows the $ \alpha $ decay energy calculated in Ref. [49], the third column shows the decay energy calculated in Eq. (2), the fourth column shows the decay energy after neural network learning, the fifth column shows the $ \alpha $ decay half-life calculated using the UDL formula, and the sixth column shows the $ \alpha $ decay half-life after learning using the neural network.

    核素 $ {Q}_{\alpha }^{\mathrm{L}\mathrm{Z}\mathrm{U}} $ $ {Q}_{\alpha }^{\mathrm{E}\mathrm{q}. \left(2\right)} $ $ {Q}_{\alpha }^{\mathrm{N}\mathrm{N}} $ UDL $ {\mathrm{U}\mathrm{D}\mathrm{L}}^{\mathrm{N}\mathrm{N}} $
    300120 13.05 9.83 13.03 –5.45 –5.59
    296118 11.89 9.85 11.75 –3.21 –3.35
    292116 10.64 10.34 10.08 –1.44 –1.57
    288114 9.82 10.92 10.03 0.03 –0.09
    284112 10.18 11.14 9.61 0.59 0.47
    280110 10.04 10.74 10.63 –2.88 –3.19
    302120 12.81 9.63 13.31 –6.05 –6.43
    298118 11.86 9.34 11.85 –3.48 –3.86
    294116 10.59 9.62 10.66 –1.12 –1.49
    290114 9.56 10.20 9.69 0.99 0.63
    286112 9.23 10.64 9.01 2.45 2.10
    282110 9.52 10.56 10.34 –2.16 –2.74
    304120 12.66 9.57 13.64 –6.73 –7.25
    300118 11.75 8.97 12.04 –3.94 –4.46
    296116 10.56 8.98 10.62 –1.03 –1.54
    292114 9.18 9.45 9.39 1.91 1.43
    288112 8.95 10.01 8.43 4.43 3.99
    284110 8.48 10.21 9.94 –1.09 –1.84
    306120 13.29 9.61 13.99 –7.41 –8.01
    302118 11.65 8.76 12.29 –4.54 –5.13
    298116 10.63 8.45 10.66 –1.17 –1.74
    294114 8.85 8.72 9.14 2.67 2.16
    290112 8.49 9.28 7.91 6.41 6.00
    286110 8.12 9.71 9.43 0.35 –0.51
    308120 13.07 9.73 14.32 –8.05 –8.68
    304118 12.36 8.69 12.59 –5.20 –5.82
    300116 10.57 8.08 10.77 –1.49 –2.06
    296114 8.53 8.07 8.97 3.21 2.77
    292112 8.30 8.52 7.49 8.17 7.87
    288110 7.68 9.06 8.86 2.16 1.12
    310120 11.61 9.85 14.60 –8.57 –9.21
    306118 12.61 8.73 12.89 –5.86 –6.46
    302116 11.37 7.85 10.93 –1.94 –2.44
    298114 8.32 7.53 8.89 3.47 3.18
    294112 7.96 7.78 7.20 9.44 9.26
    290110 7.56 8.33 8.26 4.24 2.91
    下载: 导出CSV
  • [1]

    Akrawy D T, Poenaru D N 2017 J. Phys. G: Nucl. Part. Phys. 44 105105Google Scholar

    [2]

    Pahlavani M R, Joharifard M 2019 Phys. Rev. C 99 044601Google Scholar

    [3]

    Deng J G, Zhang H F 2020 Phys. Rev. C 102 044314Google Scholar

    [4]

    Khuyagbaatar J, Heßberger F P, Hofmann S, Ackermann D, Burkhard H G, Heinz S, Kindler B, Kojouharov I, Lommel B, Mann R, Maurer J, Nishio K 2020 Phys. Rev. C 102 044312Google Scholar

    [5]

    Olesen E, Nazarewicz W 2019 Phys. Rev. C 99 014317Google Scholar

    [6]

    Zhao T L, Bao X J 2018 Phys. Rev. C 98 064307

    [7]

    Oganessian Y T, Utyonkov V K, Lobanov Yu V, Abdullin F Sh, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Yu S, Voinov A A, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Vostokin G K, Itkis M G 2006 Phys. Rev. C 74 044602Google Scholar

    [8]

    Inauguration of the factory of superheavy elements, http://www.jinr.ru/posts/inauguration-of-the-factory-of-superheavy-elements/, accessed: 2019-05-25.

    [9]

    Hofmann S, Mnzenberg G 2000 Rev. Mod. Phys. 72 733Google Scholar

    [10]

    Sobiczewski A, Pomorski K 2007 Prog. Part. Nucl. Phys. 58 292Google Scholar

    [11]

    Oganessian Y T, Sobiczewski A, Ter-Akopian G M 2017 Phys. Scr. 92 023003Google Scholar

    [12]

    Oganessian Y T, Utyonkov V K 2015 Nucl. Phys. A 944 62Google Scholar

    [13]

    M oller P, Nix J R, Kartz K L 1997 At. Data Nucl. Data Tables 66 131Google Scholar

    [14]

    Chasman R. R, Ahmad I, Friedman A M, Erskine J R 1977 Rev. Mod. Phys. 49 833Google Scholar

    [15]

    Mayer M G 1948 Phys. Rev. 74 235Google Scholar

    [16]

    Haxel O, Jensen J H D, Suess H E 1949 Phys. Rev. 75 1766

    [17]

    Mayer M G 1949 Phys. Rev. 75 1969Google Scholar

    [18]

    Koura H, Tachibana T, Uno M, Yamada M 2005 Prog. Theor. Phys 113 305Google Scholar

    [19]

    Wang N, Liu M 2010 Phys. Rev. C 81 044322Google Scholar

    [20]

    M oller P, Sierk A J, Ichikawa T, Sagawa H 2016 At. Data Nucl. Data Tables 109 1

    [21]

    Goriely S, Chamel N, Pearson J M 2009 Phys. Rev. Lett. 102 152503Google Scholar

    [22]

    Goriely S, Hilaire S, Girod M, Péru S 2009 Phys. Rev. Lett. 102 242501Google Scholar

    [23]

    Zhao P W, Li Z P, Yao J M, Meng J 2010 Phys. Rev. C 82 054319.Google Scholar

    [24]

    Dong T, Ren Z 2010 Phys. Rev. C 82 034320Google Scholar

    [25]

    Wang M, Audi G, Kondev F G, Huang W J, Naimi S, Xu X 2017 Chin. Phys. C 41 030003Google Scholar

    [26]

    Geiger H, Nuttall J 1911 London Edinburgh Dublin Philos. Mag. J. Sci. 22 613Google Scholar

    [27]

    Wang Y Z, Wang S J, Hou Z Y, Gu J Z 2015 Phys. Rev. C 92 064301

    [28]

    Gazula S, Clark J, Bohr H 1992 Nucl. Phys. A 540 1Google Scholar

    [29]

    Gernoth K, Clark J, Prater J, Bohr H 1993 Phys. Lett. B 300 1Google Scholar

    [30]

    Gernoth K Clark J 1995 Neural Netw. 8 291Google Scholar

    [31]

    Athanassopoulos S, Mavrommatis E, Gernoth K A, Clark J W 2004 Nucl. Phys. A 743 222Google Scholar

    [32]

    Bayram T, Akkoyun S, Kara S O 2014 Ann. Nucl. Energy 63 172Google Scholar

    [33]

    Utama R, Piekarewicz J 2017 Phys. Rev. C 96 044308Google Scholar

    [34]

    Utama R, Piekarewicz J, Prosper H B 2016 Phys. Rev. C 93 014311Google Scholar

    [35]

    Zhang H F, Wang L H, Yin J P, Chen P H, Zhang H F 2017 J. Phys. G 44 045110Google Scholar

    [36]

    Niu Z M, Liang H Z 2018 Phys. Lett. B 778 48Google Scholar

    [37]

    Levenberg K 1944 Quart. Appl. Math 2 164Google Scholar

    [38]

    Marquardt D 1963 SIAM J. Appl. Math 11 431Google Scholar

    [39]

    Press W, Teukolsky S, Vetterling W, Flannery F 1992 678

    [40]

    Xu C, Ren Z Z 2006 Phy. Rev. C 74 014304

    [41]

    Bao X J, Zhang H F, Zhang H F, Royer G, Li J Q 2014 Nucl. Phys. A 921 85Google Scholar

    [42]

    Long W H, Meng J, Zhou S G 2002 Phys. Rev. C 65 047306Google Scholar

    [43]

    Qi C, Xu F R, Liotta R J, Wyss R ( 2009 Phys. Rev. Lett. 103 072501Google Scholar

    [44]

    Qi C, Xu F R, Liotta R J, Wyss R, Zhang M Y, Asawatangtrakuldee C, Hu D 2009 Phys. Rev. C 80 044326Google Scholar

    [45]

    Ni D D, Ren Z Z, Dong T K, Xu C 2008 Phys. Rev. C 78 044301

    [46]

    Parkhomenko A, Sobiczewski A 2005 Acta Phys. Pol. B 36 3095

    [47]

    Royer G 2000 J. Phys. G 26 1149Google Scholar

    [48]

    Zhao T L, Bao X J, Guo S Q 2018 J. Phys. G 45 025106Google Scholar

    [49]

    Audi G, Kondev F G, Wang M, Huang W J, Naimi S 2017 Chin Phys. C 41 030001Google Scholar

    [50]

    Zhang Z Y, Yang H B, Huang M H, Gan Z G, Yuan C X, Qi C, Andreyev A N, Liu M L, Ma L, Zhang M M, Tian Y L, Wang Y S, Wang J G, Yang C L, Li G S, Qiang Y H, Yang W Q, Chen R F, Zhang H B, Lu Z W, Xu X X, Duan L M, Yang H R, Huang W X, Liu Z, Zhou X H, Zhang Y H, Xu H S, Wang N, Zhou H B, Wen X J, Huang S, Hua W, Zhu L, Wang X, Mao Y C, He X T, Wang S Y, Xu W Z, Li H W, Ren Z Z, Zhou S G 2021 Phys. Rev. Lett. 126 152502Google Scholar

    [51]

    Wang N, Liu M, Wu X Z, Meng J 2014 Phys. Lett. B 734 215Google Scholar

    [52]

    M Öller P, Sierk A J, Ichikawa T, Sagawa H 2016 At. Data Nucl. Data Tables 109 1

    [53]

    Oganessian Y T, Sobiczewski A, Ter-Akopian G M 2017 Phys. Scr. 92 023003Google Scholar

    [54]

    Ma N N, Zhang H F, Bao X J, Zhang H F 2019 Chin. Phys. C 43 0441

  • [1] 田文静, 杨宗谕, 许敏, 龙婷, 何小雪, 柯锐, 杨硕苏, 余德良, 石中兵, 高喆. 光谱诊断中神经网络快速分析模型及外推方法. 物理学报, doi: 10.7498/aps.74.20241739
    [2] 魏凯文, 尚天帅, 田榕赫, 杨东, 李春娟, 陈军, 李剑, 黄小龙, 朱佳丽. 基于神经网络方法研究β衰变释放粒子的平均能量数据. 物理学报, doi: 10.7498/aps.74.20250655
    [3] 邢凤竹, 乐先凯, 王楠, 王艳召. Z = 118—120超重核α衰变性质的研究. 物理学报, doi: 10.7498/aps.74.20240907
    [4] 马锐垚, 王鑫, 李树, 勇珩, 上官丹骅. 基于神经网络的粒子输运问题高效计算方法. 物理学报, doi: 10.7498/aps.73.20231661
    [5] 张凯林, 韩胜贤, 岳生俊, 刘作业, 胡碧涛. 强激光场对原子核α衰变的影响. 物理学报, doi: 10.7498/aps.73.20231627
    [6] 焦宝宝. 基于原子核密度的核电荷半径新关系. 物理学报, doi: 10.7498/aps.72.20230126
    [7] 方波浪, 王建国, 冯国斌. 基于物理信息神经网络的光斑质心计算. 物理学报, doi: 10.7498/aps.71.20220670
    [8] 黄宇航, 陈理想. 基于未训练神经网络的分数傅里叶变换成像. 物理学报, doi: 10.7498/aps.73.20240050
    [9] 魏德志, 陈福集, 郑小雪. 基于混沌理论和改进径向基函数神经网络的网络舆情预测方法. 物理学报, doi: 10.7498/aps.64.110503
    [10] 李欢, 王友国. 一类非线性神经网络中噪声改善信息传输. 物理学报, doi: 10.7498/aps.63.120506
    [11] 陈铁明, 蒋融融. 混沌映射和神经网络互扰的新型复合流密码. 物理学报, doi: 10.7498/aps.62.040301
    [12] 张蔚泓, 牛中明, 王枫, 龚孝波, 孙保华. 宇宙核时钟不确定度的研究. 物理学报, doi: 10.7498/aps.61.112601
    [13] 李华青, 廖晓峰, 黄宏宇. 基于神经网络和滑模控制的不确定混沌系统同步. 物理学报, doi: 10.7498/aps.60.020512
    [14] 赵海全, 张家树. 混沌通信系统中非线性信道的自适应组合神经网络均衡. 物理学报, doi: 10.7498/aps.57.3996
    [15] 王永生, 孙 瑾, 王昌金, 范洪达. 变参数混沌时间序列的神经网络预测研究. 物理学报, doi: 10.7498/aps.57.6120
    [16] 黄明辉, 甘再国, 范红梅, 苏朋源, 马 龙, 周小红, 李君清. 超重核合成时的驱动势与热熔合反应截面. 物理学报, doi: 10.7498/aps.57.1569
    [17] 王瑞敏, 赵 鸿. 神经元传输函数对人工神经网络动力学特性的影响. 物理学报, doi: 10.7498/aps.56.730
    [18] 王耀南, 谭 文. 混沌系统的遗传神经网络控制. 物理学报, doi: 10.7498/aps.52.2723
    [19] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制. 物理学报, doi: 10.7498/aps.51.2463
    [20] 神经网络的自适应删剪学习算法及其应用. 物理学报, doi: 10.7498/aps.50.674
计量
  • 文章访问数:  393
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-04
  • 修回日期:  2025-08-07
  • 上网日期:  2025-08-11

/

返回文章
返回