-
原子核质量、β衰变半衰期以及中子俘获率是快中子俘获过程(r-过程)模拟中必不可少的核物理输入量,且核质量还影响着β衰变半衰期和中子俘获率的预测。然而,r-过程模拟涉及的许多丰中子核的质量仍然依靠理论模型的预言,并且不同模型预言结果存在显著差异。本文选取了十种原子核质量模型,其中涵盖了宏观、微观、宏观-微观模型以及结合机器学习方法的质量模型,系统研究核质量不确定性对β衰变半衰期和中子俘获率的影响。基于不同的质量表,分别采用β衰变半衰期半经验公式和TALYS程序,计算了相应原子核的β衰变半衰期和中子俘获率,为r-过程模拟提供了较为自洽的核物理输入。研究发现,丰中子区域不同质量模型的质量预言不确定性可达10 MeV。质量不确定性对丰中子核素β衰变半衰期的预言产生的差异基本在0.6个数量级以内。而对中子俘获率的影响更为显著,当天体环境温度为T=109 K时,近中子滴线核区的中子俘获率平均不确定性为2 ∼ 3个数量级,部分核素的最大与最小预言值差距甚至超过十个数量级。向丰中子区域外推时,原子核的中子俘获反应能Q(n,γ)直接影响着中子俘获率的变化趋势,并且在丰中子区域中子俘获率对Q(n,γ)的不确定性非常敏感。此外,天体环境温度升高可降低质量不确定性对远离稳定线的原子核中子俘获率预言的影响。本研究基于十种不同质量模型计算了β衰变半衰期和中子俘获率,为r-过程模拟提供了更多自洽的核物理输入。本文数据集可在科学数据银行https://www.doi.org/10.57760/sciencedb.j00213.00222中访问获取(审稿阶段请通过私有访问链接https://www.scidb.cn/s/iyIZFf查看本文数据集)。Nuclear mass, β-decay half-life, and neutron-capture rate are the most important nuclear physics inputs for rapid-neutron capture process (r-process) simulations. Nuclear mass can directly impact the abundance ratio of neighboring isotopes during the (n,γ)-(γ,n) equilibrium stage. On the other hand, nuclear mass influences the predictions of β-decay half-lives and the neutron-capture rates, thus indirectly impacting the r-process simulation. Currently, only about 3000 nuclear masses have been precisely measured in experiments, and many of the nuclear masses involved in r-process simulations can only be predicted by theory models. However, when extrapolating nuclear masses towards the neutron drip line, there are large discrepancies between the predictions of different mass models, which inevitably affects the predictions of β-decay half-lives and neutron-capture rates. In this work, ten mass models are employed to systematically study the impact of nuclear mass uncertainties on β-decay half-lives and neutron-capture rates. The β-decay half-lives and neutron-capture rates are calculated by the β-decay half-life semi-empirical formula and TALYS code, respectively. It has been found that the uncertainties in nuclear mass predictions among different mass models can reach 10 MeV in the neutron-rich region; the differences between the maximum and minimum masses predicted by these models even exceed 30 MeV for some nuclei. For the predictions of β-decay energy Qβ and (n, γ) reaction energy Q(n,γ), there are large deviations mainly around the neutron magic numbers and close to the neutron drip line, with uncertainties about 1 MeV and 2 MeV, respectively. The impact of mass uncertainties on the β-decay half-lives is about 0.6 orders of magnitude for neutron-rich nuclei. The uncertainties of neutron-capture rates increase significantly when extrapolating towards the neutron-rich region. At the temperature of T = 109 K, the average uncertainties of neutron-capture rates range over 2 ∼ 3 orders of magnitude for nuclei near neutron drip line. Taking N = 50, 82, 126, 184 isotones as examples, it is found that the differences between the maximum and minimum neutron-capture rates obtained from various nuclear mass models even exceed 10 orders of magnitude for some nuclei. The Q(n,γ) directly impacts the trend of the neutron-capture rates, and the neutron-capture rates are very sensitive to the uncertainties of Q(n,γ) for neutron-rich nuclei. In addition, the effect of temperature on neutron-capture rates has also been investigated, and it is found that the increase in temperature can reduce the impact of mass uncertainties on the predictions of neutron-capture rates for neutron-rich nuclei. In this work, the β-decay half-lives and neutron-capture rates are calculated based on ten mass tables. Therefore, more self-consistent nuclear physics inputs will be provided for the simulation of the r-process. The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00222 (Please use the private access link https://www.scidb.cn/s/iyIZFf to access the dataset during the peer review process).
-
Keywords:
- r-process /
- nuclear mass /
- β-decay half-life /
- neutron-capture rate
-
[1] Burbidge E M, Burbidge G R, Fowler W A, Hoyle F 1957 Rev. Mod. Phys. 29 547
[2] Thielemann F K, Arcones A, Käppeli R, Liebendörfer M, Rauscher T, Winteler C, Fröhlich C, Dillmann I, Fischer T, Martínez-Pinedo G, Langanke K, Farouqi K, Kratz K L, Panov I, Korneev I K 2011 Prog. Part. Nucl. Phys. 66 346
[3] Kajino T, Aoki W, Balantekin A, Diehl R. Famiano M, Mathews G 2019 Prog. Part. Nucl. Phys. 107 109
[4] Cowan J J, Sneden C, Lawler J E, Aprahamian A, Wiescher M, Langanke K, Martínez-Pinedo G, Thielemann F K 2021 Rev. Mod. Phys. 93 015002
[5] Pian E, D’Avanzo P, Benetti S, Branchesi M, Brocato E, Campana S, Cappellaro E, Covino S, D’Elia V, Fynbo J P U, Getman F, Ghirlanda G, Ghisellini G, Grado A, Greco G, Hjorth J, Kouveliotou C, Levan A, Limatola L, Malesani D, Mazzali P A, Melandri A, Møller P, Nicastro L, Palazzi E, Piranomonte S, Rossi A, Salafia O S, Selsing J, Stratta G, Tanaka M, Tanvir N R, Tomasella L, Watson D, Yang S, Amati L, Antonelli L A, Ascenzi S, Bernardini M G, Boër M, Bufano F, Bulgarelli A, Capaccioli M, Casella P, Castro-Tirado A J, Chassande-Mottin E, Ciolfi R, Copperwheat C M, Dadina M, De Cesare G, Di Paola A, Fan Y Z, Gendre B, Giuffrida G, Giunta A, Hunt L K, Israel G L, Jin Z P, Kasliwal M M, Klose S, Lisi M, Longo F, Maiorano E, Mapelli M, Masetti N, Nava L, Patricelli B, Perley D, Pescalli A, Piran T, A. Possenti, Pulone L, Razzano M, Salvaterra R, Schipani P, Spera M, Stamerra A, Stella L, Tagliaferri G, Testa V, Troja E, Turatto M, Vergani S D, Vergani D 2017 Nature 551 67[6] Watson D, Hansen C J, Selsing J, Koch A, Malesani D B, Andersen A C, Fynbo J P U, Arcones A, Bauswein A, Covino S, Grado A, Heintz K E, Hunt L, Kouveliotou C, Leloudas G, Levan A J, Mazzali P, Pian Elena 2019 Nature 574 497
[6] Kobayashi C, Karakas A I, Lugaro M 2020 Astrophys. J. 900 179
[7] Lattimer J M, Schramm D N 1974 Astrophys. J. 192 L145
[8] Meyer B S, Mathews G J, Howard W M, Woosley S E, Hoffman R D 1992 Astrophys. J. 399 656
[9] Woosley S E, Wilson J R, Mathews G J, Hoffman R D, Meyer B S 1994 Astrophys. J. 433 229
[10] Qian Y Z, Woosley S E 1996 Astrophys. J. 471 331
[11] Nishimura N, Takiwaki T, Thielemann F K 2015 Astrophys. J. 810 109
[12] Fischer T, Whitehouse S C, Mezzacappa A, Thielemann F K, Liebendörfer M 2010 Astron. Astrophys. 517 A80
[13] Mumpower M R, Surmana R, McLaughlin G C, Aprahamian A 2016 Prog. Part. Nucl. Phys. 86 86
[14] Jiang X F, Wu X H, Zhao P W 2021 Astrophys. J. 915 29
[15] Chen J, Fang J Y, Hao Y W, Niu Z M, Niu Y F 2023 Astrophys. J. 943 102
[16] Hao Y W, Niu Y F, Niu Z M 2022 Astrophys. J. 933 3
[17] Kondev F G, Wang M, Huang W J, Naimi S, Audi G 2021 Chin. Phys. C 45 030001
[18] Uyen N K, Chae K Y, Duy N N, Ly N D 2022 J. Phys. G: Nucl. Part. Phys. 49 025201
[19] Zhou Y, Li Z H, Wang Y B, Chen Y S, Guo B, Su J, Li Y J, Yan S Q, Li X Y, Han Z Y, Shen Y P, Gan L, Zeng S, Lian G, Liu W P 2017 Sci. China-Phys. Mech. Astron. 60 082012
[20] Xia J G, Li W F, Fang J Y, Niu Z M 2024 Acta Phys. Sin. 73 062301 (in Chinese)
[21] [夏金戈,李伟 峰,方基宇,牛中明 2024 物理学报 73 062301]
[22] Tian L, Li W F, Fang J Y, Niu Z M 2025 Chin. Phys. C 49 044110
[23] Takahashi K, Yamada M 1969 Prog. Theor. Phys. 41 1470
[24] Tachibana T, Yamada M, Yoshida Y 1990 Prog. Theor. Phys. 84 641
[25] Nakata H, Tachibana T, Yamada M 1997 Nucl. Phys. A 625 521
[26] Martínez-Pinedo G, Langanke K 1999 Phys. Rev. Lett. 83 4502[27] Langanke K, Martínez-Pinedo G 2003 Rev. Mod. Phys. 75 819
[27] Suzuki T, Yoshida T, Kajino T, Otsuka T 2012 Phys. Rev. C 85 015802
[28] Zhi Q, Caurier E, Cuenca-García J J, Langanke K, Martínez Pinedo G, Sieja K 2013 Phys. Rev. C 87 025803
[29] Engel J, Bender M, Dobaczewski J, Surman R 1999 Phys. Rev. C 60 014302
[30] Minato F, Bai C L 2013 Phys. Rev. Lett. 110 122501
[31] Niu Z M, Niu Y F, Liu Q, Liang H Z, Guo J Y 2013 Phys. Rev. C 87 051303(R)
[32] Marketin T, Huther L, Martínez-Pinedo G 2016 Phys. Rev. C 93 025805
[33] Niu Y F, Niu Z M, Colò G, Vigezzi E 2015 Phys. Rev. Lett. 114 142501
[34] Niu Y F, Niu Z M, Colò G, Vigezzi E 2018 Phys. Lett. B 780 325
[35] Costiris N J, Mavrommatis E, Gernoth K A, Clark J W 2009 Phys. Rev. C 80 044332
[36] Niu Z M, Liang H Z, Sun B H, Long W H, Niu Y F 2019 Phys. Rev. C 99 064307
[37] Li W F, Zhang X Y, Niu Y F, Niu Z M 2024 J. Phys. G: Nucl. Part. Phys. 51 015103
[38] Zhao B, Zhang S Q 2019 Astrophys. J. 874 5
[39] Sprouse T M, Navarro Perez R, Surman R, Mumpower M R, McLaughlin G C, Schuunck N 2020 Phys. Rev. C 101 055803
[40] Hauser W, Feshbach H 1952 Phys. Rev. 87 366
[41] Koning A, Hilaire S, Goriely S 2023 Eur. Phys. J. A 59 131
[42] Rauscher T, Thielemann F K 2000 At. Data. Nucl. Data Tables 75 1
[43] Shi M, Fang J Y, Niu Z M 2021 Chin. Phys. C 45 044103
[44] Fang J Y, Zhang X Y, Shi M, Niu Z M 2025 Eur. Phys. J. A 61 123
[45] Ma C, Li Z, Niu Z M, Liang H Z 2019 Phys. Rev. C 100 024330
[46] Von Weizsäcker C F 1935 Z. Phys. 96 431
[47] Bethe H A, Bacher R F 1936 Rev. Mod. Phys. 8 82
[48] Kirson M W 2008 Nucl. Phys. A 798 29
[49] Xu X Y, Deng L, Chen A X, Yang H, Jalili A, Wang H K 2024 Nucl. Sci. Tech. 35 91[51] Wu Q, Li W F, Niu Z M, Liang H Z, Shi M 2025 Chin. Phys. C 49 114103
[50] Wang N, Liu M, Wu X Z 2010 Phys. Rev. C 81 044322
[51] Wang N, Liang Z Y, Li M, Wu X Z 2010 Phys. Rev. C 82 044304
[52] Wang N, Liu M, Wu X Z, Meng J 2014 Phys. Lett. B 734 215
[53] Möller P, Myers W D, Sagawa H, Yoshida S 2012 Phys. Rev. Lett. 108 052501
[54] Goriely S, Chamel N, Pearson M J 2009 Phys. Rev. Lett 102 152503
[55] Goriely S, Hilaire S, Girod M, Péru S 2009 Phys. Rev. Lett 102 242501
[56] Goriely S, Chamel N, Pearson M J 2016 Phys. Rev. C 93 034337
[57] Geng L S, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785
[58] Peña-Arteaga D, Goriely S, Chamel N 2016 Eur. Phys. J. A 52 320
[59] Zhou S G, Meng J, Ring P, Zhao E G 2010 Phys. Rev. C 82, 011301(R)
[60] Guo P, Cao X J, Chen K M, Chen Z H, Cheoun M K, Choi Y B, Lam P C, Deng W M, Dong J M, Du P X, Du X K, Duan K D, Fan X H, Gao W, Geng L S, Ha E, He X T, Hu J N, Huang J K, Huang K, Huang Y N, Huang Z D, Hyung K D, Chan H Y, Jiang X F, Kim S, Kim Y, Lee C H, Lee J, Li J, Li M L, Li Z P, Li Z Z, Lian Z J, Liang H Z, Liu L, Lu X, Liu Z R, Meng J, Meng Z Y, Mun M H, Niu Y F, Niu Z M, Pan C, Peng J, Qu X Y, Papakonstantinou P, Shang T S, Shang X L, Shen C W, Shen G F, Sun T T, Sun X X, Wang S B, Wang T Y, Wang Y R, Wang Y Y, Wu J W, Wu L, Wu X H, Xia X W, Xie H H, Yao J M, Ip K Y, Yiu T C, Yu J H, Yu Y Y, Zhang K Y, Zhang S J, Zhang S Q, Zhang W, Zhang X Y, Zhang Y X, Zhang Y, Zhang Y X, Zhang Z H, Zhao Q, Zhao Y C, Zheng R Y, Zhou C, Zhou S G, Zuo L J, DRHBc Mass Table Collaboration 2024 Atomic Data Nucl. Data Tables 158 101661
[61] Gao Z P, Wang Y J, Lv H L, Li Q F, Shen C W, Liu L 2021 Nucl. Sci. Tech. 32, 109
[62] Wu X H, Lu Y Y, Zhao P W 2022 Phys. Lett. B 834 137394
[63] Niu Z M, Liang H Z 2022 Phys. Rev. C 106 L021303
[64] Niu Z M, Fang J Y, Niu Y F 2019 Phys. Rev. C 100 054311
[65] Mumpower M R, Surman R, Fang D L, Beard M, Möller P, Kawano T, Aprahamian A 2015 Phys. Rev. C 92 035807[68] Koura H, Tachibana T, Uno M, Yamada M 2005 Prog. Theor. Phys. 113 305
[66] Bhagwat A 2014 Phys. Rev. C 90 064306
[67] Kortelainen M, McDonnell J, Nazarewicz W, Reinhard P G, Sarich J, Schunck N, Stoitsov M V, Wild S M 2012 Phys. Rev. C 85 024304
[68] Duflo J, Zuker A P 1995 Phys. Rev. C 52 R23
[69] Wang M, Huang W J, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003
[70] Koning A J, Delaroche J P 2003 Nucl. Phys. A 713 231
[71] Koning A J, Rochman D 2012 Nucl. Data Sheets 113 2841
[72] Niu Z M, Niu Y F, Liang H Z, Long W H, Nikšić T, Dretenar D, Meng J 2013 Phys. Lett. B 723 172
[73] Brett S, Bentley I, Paul N, Surman R, Aprahamian A 2012 Eur. Phys. J. A 48 184
[74] Surman R, Beun J, McLaughlin G C, Hix W R 2009 Phys. Rev. C 79 045809
[75] Mumpower M, Surman R, Aprahamian A 2015 J. Phys: Conf. Ser. 599 012031
[76] Mumpower M R, McLaughlin G C, Surman R 2012 Phys. Rev. C 86 035803
[77] Zheng J S, Wang N Y, Wang Z Y, Niu Z M, Niu Y F, Sun B 2014 Phys. Rev. C 90 014303
计量
- 文章访问数: 34
- PDF下载量: 0
- 被引次数: 0