-
中子辐射俘获反应在反应堆运行、核装置设计及核天体物理研究中起重要的作用. 4π BaF2探测装置有着高时间分辨能力、低中子灵敏度、高探测效率等优点, 适合开展中子辐射俘获反应截面数据的测量. 中国原子能科学研究院核数据重点实验室建立了伽马全吸收装置(Gamma total absorption facility, GTAF), 该装置用28块六棱BaF2晶体和12块五棱BaF2晶体构成了外径25 cm, 内径10 cm的球壳, 覆盖了95.2%的立体角. 利用GTAF在中国散裂中子源Back-n束线上, 测量了197Au(n, γ)的反应截面数据. 测量数据通过能量筛选、PSD方法、晶体多重性筛选进行了初步本底扣除, 随后结合对natC及空样品的测量数据对本底进行了分析及扣除, 获得了197Au俘获反应的产额, 利用SAMMY程序拟合得到了197Au在1—100 eV的共振能量、中子共振宽度和伽马共振宽度参数. 实验测量结果与ENDF/B-VIII.0数据库符合良好, 其共振参数存在一定差异, 分析原因可能与GTAF能量分辨率、Back-n的中子能谱测量精度、以及实验本底扣除方法相关, 这也是下一步工作的重点.Neutron capture reaction is one of the neutron reactions and plays an important role in using reactor control rods and shell materials, designing nuclear device structures, and studying nuclear astrophysics S processes and element origins. The 4π BaF2 detection device has advantages such as high time resolution, low neutron sensitivity, and high detection efficiency, thus making it suitable for measuring neutron radiation capture reaction cross-section data. In order to fill the gap in our neutron capture reaction data in the keV energy range and improve their accuracy, the Key Laboratory of Nuclear Data at the Chinese Institute of Atomic Energy (CIAE) has established a Gamma Total Absorption Facility (GTAF), which consists of 28 hexagonal BaF2 crystals and 12 pentagonal BaF2 crystals to form a spherical shell with an external diameter of 25 cm and an internal diameter of 10 cm, covering 95.2% of the solid angles. The Back-n beam line of the Chinese Spallation Neutron Source (CSNS) is a back-streaming white beam line that covers neutron energy ranging from a few eV to several hundred MeV, making it suitable for measuring neutron capture cross-sections. The reaction cross-section data of 197Au is measured by using GTAF on the Back-n beam line. The measurement data are preliminarily background deducted through energy screening, PSD method, and crystal multiplicity screening. Subsequently, the background is analyzed and deducted based on the measurement data of natC and empty samples, and the yield of 197Au capture reaction is obtained. Resonance parameters are a set of parameters extracted from experimental data to describe the resonance curve, which can eliminate the influence of experimental conditions on resonance data and are more important than the cross-section obtained from experiments. The resonance energy, neutron resonance width, and gamma resonance width parameters of 197Au at 1–100 eV are fitted by using the SAMMY program. From the comparison between the resonance curves obtained from experimental measurements and the resonance parameters obtained from fitting with the ENDF/B-VIII.0 database, it can follow that the experimental measurement results are in good agreement with the database, nevertheless, there exist some differences in the resonance parameter, which may be due to the GTAF energy resolution, Back-n neutron spectrum measurement accuracy, and the experimental background deduction method. Our next work is to identify the sources of difference.
-
Keywords:
- neutron capture cross section /
- resonance parameters /
- white neutron source /
- gamma-ray total absorption facility
[1] Palmiotti G, Salvatores M, Assawaroongruengchot M 2009 International Conference on Fast Reactors and Related Fuel Cycles Kyoto, Japan, December 7–11, 2009 pINL/CON-09-17363
[2] Arnould M, Katsuma M 2008 International Conference on Nuclear Data for Science and Technology Nice, France, April 22–27, 2008 p5
[3] Kompe D 1969 Nucl. Phys. 133 513Google Scholar
[4] Wisshak K, Kappeler F, Reffo G 1984 Nucl. Sci. Eng. 88 594Google Scholar
[5] Terada K, Katabuchi T, Mizumoto M, Arai T, Saito T, Igashira M, Hirose K, Nakamura S, Kimura A, Harada H, Hori J, Kino K, Kiyanagi Y 2015 Prog. Nucl. Energy 82 118Google Scholar
[6] Kobayashi K, Lee S, Yamamoto S 2004 Nucl. Sci. Eng. 146 209Google Scholar
[7] Mingrone F, Massimi C, Altstadt S 2014 International Conference on Nuclear Data for Science and Technology New York, USA, March 4–8, 2013 18
[8] Guber K H, Derrien H, Leal L C, Arbanas G, Wiarda D, Koehler P E, Harvey A 2010 Phys. Rev. C 82 057601Google Scholar
[9] Wisshak K, Voss F, Kaeppeler F, Krticka M, Gallino R 2006 Phys. Rev. C 73 015802Google Scholar
[10] Mendoza E, Cano-Ott D, Altstadt S, et al. 2018 Phys. Rev. C 97 054616Google Scholar
[11] Mosby S, Bredeweg T A, Couture A, Jandel M, Kawano T, Ullmann J L, Henderson R A, Wu C Y 2018 Phys. Rev. C 97 041601Google Scholar
[12] 石斌, 彭猛, 张奇玮, 贺国珠, 周祖英, 唐洪庆 2018 原子能科学技术 52 1537Google Scholar
Shi B, Peng M, Zhang Q W, He G Z, Zhou Z Y, Tang H Q 2018 At. Energy Sci. Technol. 52 1537Google Scholar
[13] 唐靖宇, 安琪, 白怀勇等 2019 原子能科学技术 53 2012Google Scholar
Tang J Y, An Q, Bai H Y, et al. 2019 At. Energy Sci. Technol. 53 2012Google Scholar
[14] 丁大钊, 叶春堂, 赵志祥1996 中子物理学——原理、方法与应用 (北京: 原子能出版社) 第387—389页
Ding D Z, Ye C T, Zhao Z X 1996 Neutron Physics-Principles, Methods, and Applications (Beijing: Atomic Energy Press) pp387–389
[15] 卢希庭等 2000 原子核物理 (北京: 原子能出版社) 第263—267页
Lu X T 2000 Nuclear Physics (Beijing: Atomic Energy Press) pp263–267
[16] An Q, Bai H Y, Bao J, et al. 2017 J. Instrum. 12 7022Google Scholar
[17] Tang J Y, Fu S N, Jing H T, Tang H Q, Wei J, Xia H H 2010 Chin. Phys. C 34 121Google Scholar
[18] Jing H T, Tang J Y, Tang H Q, Xia H H, Liang T J, Zhou Z Y, Zhong Q P, Ruan X C 2010 Nucl. Instrum. Methods Phys. Res. , Sect. A 621 91Google Scholar
[19] 唐靖宇, 敬罕涛, 夏海鸿, 唐洪庆, 张闯, 周祖英, 阮锡超, 张奇玮, 杨征 2013 原子能科学技术 47 1089Google Scholar
Tang J Y, Jing H T, Xia H H, Tang H Q, Zhang C, Zhou Z Y, Ruan X C, Zhang Q W, Yang Z 2013 At. Energy Sci. Technol. 47 1089Google Scholar
[20] 任杰, 阮锡超, 唐洪庆, 葛智刚, 黄翰雄, 敬罕涛, 唐靖宇, 黄蔚玲 2014 核技术 37 100521Google Scholar
Ren J, Ruan X C, Tang H Q, Ge Z G, Huang H X, Jing H T, Tang J Y, Huang W L 2014 Nucl. Tech. 37 100521Google Scholar
[21] Chen Y H, Luan G Y, Bao J, et al. 2019 Eur. Phys. J. A 55 115Google Scholar
[22] 张奇玮, 栾广源, 任杰等 2021 物理学报 70 222801Google Scholar
Zhang Q W, Luan G Y, Ren J, et al. 2021 Acta Phys. Sin. 70 222801Google Scholar
[23] Heil M, Reifarth R, Fowler M M, et al. 2019 IEEE Trans. Nucl. Sci. 66 1095Google Scholar
[24] Wang Q, Cao P, Qi X, Yu T, Ji X, Xie L, An Q S 2018 Rev. Sci. Instrum. 89 013511Google Scholar
[25] 张奇玮, 贺国珠, 黄兴, 程品晶, 阮锡超, 朱兴华 2016 原子能科学技术 50 536Google Scholar
Zhang Q W, He G Z, Huang X, Cheng P J, Ruan X C, Zhu X H 2016 At. Energy Sci. Technol. 50 536Google Scholar
[26] 张奇玮, 贺国珠, 黄兴, 阮锡超, 李志宏, 朱兴华 2014 原子能科学技术 48 612Google Scholar
Zhang Q W, He G Z, Huang X, Ruan X C, Li Z H, Zhu X H 2014 At. Energy Sci. Technol. 48 612Google Scholar
[27] Fröhner F H 1980 Applied Neutron Resonance Theory (Karlsruhe: Kernforschungszentrum Karlsruhe GmbHP
[28] Lane A M, Thomas R G 1958 Rev. Mod. Phys. 30 257Google Scholar
[29] Larson N M 2008 Updated User’s Guide for Sammy: Multilevel R-Matrix Fits to Neutron Data Using Bayes’ Equations ORNL/TM-9179/R8 ENDF-364/R2
-
表 1 实验样品参数
Table 1. Characteristics of experimental samples.
样品 直径/mm 厚度/mm 密度/(g⋅cm–3) 197Au 40 0.2 19.32 natC 40 1.0 2.25 表 2 197Au自旋组信息
Table 2. Information of spin groups of 197Au.
自旋组 基态自旋 中子自旋 总自旋角动量 轨道角动量 总角动量 1 +1.5 –0.5 +1 0 +1 2 +1.5 +0.5 +2 0 +2 表 3 SAMMY拟合的共振参数与ENDF/B-VIII.0对比
Table 3. Comparison of resonance parameters fitted by SAMMY and ENDF/B-VIII.0.
能量/eV 中子共振宽度/meV 伽马共振宽度/meV 拟合值 ENDF/B-VIII.0 拟合值 ENDF/B-VIII.0 拟合值 ENDF/B-VIII.0 4.93709 4.8997 17.6345 1.496 121.9605 121.4 46.5717 46.669 0.20511 0.22 190.5456 127 57.9329 58.078 4.99505 0.431 175.7 113 59.9007 60.2914 137.619 7.066 115.4935 118 78.2631 78.5 34.3565 17 125.296 124 -
[1] Palmiotti G, Salvatores M, Assawaroongruengchot M 2009 International Conference on Fast Reactors and Related Fuel Cycles Kyoto, Japan, December 7–11, 2009 pINL/CON-09-17363
[2] Arnould M, Katsuma M 2008 International Conference on Nuclear Data for Science and Technology Nice, France, April 22–27, 2008 p5
[3] Kompe D 1969 Nucl. Phys. 133 513Google Scholar
[4] Wisshak K, Kappeler F, Reffo G 1984 Nucl. Sci. Eng. 88 594Google Scholar
[5] Terada K, Katabuchi T, Mizumoto M, Arai T, Saito T, Igashira M, Hirose K, Nakamura S, Kimura A, Harada H, Hori J, Kino K, Kiyanagi Y 2015 Prog. Nucl. Energy 82 118Google Scholar
[6] Kobayashi K, Lee S, Yamamoto S 2004 Nucl. Sci. Eng. 146 209Google Scholar
[7] Mingrone F, Massimi C, Altstadt S 2014 International Conference on Nuclear Data for Science and Technology New York, USA, March 4–8, 2013 18
[8] Guber K H, Derrien H, Leal L C, Arbanas G, Wiarda D, Koehler P E, Harvey A 2010 Phys. Rev. C 82 057601Google Scholar
[9] Wisshak K, Voss F, Kaeppeler F, Krticka M, Gallino R 2006 Phys. Rev. C 73 015802Google Scholar
[10] Mendoza E, Cano-Ott D, Altstadt S, et al. 2018 Phys. Rev. C 97 054616Google Scholar
[11] Mosby S, Bredeweg T A, Couture A, Jandel M, Kawano T, Ullmann J L, Henderson R A, Wu C Y 2018 Phys. Rev. C 97 041601Google Scholar
[12] 石斌, 彭猛, 张奇玮, 贺国珠, 周祖英, 唐洪庆 2018 原子能科学技术 52 1537Google Scholar
Shi B, Peng M, Zhang Q W, He G Z, Zhou Z Y, Tang H Q 2018 At. Energy Sci. Technol. 52 1537Google Scholar
[13] 唐靖宇, 安琪, 白怀勇等 2019 原子能科学技术 53 2012Google Scholar
Tang J Y, An Q, Bai H Y, et al. 2019 At. Energy Sci. Technol. 53 2012Google Scholar
[14] 丁大钊, 叶春堂, 赵志祥1996 中子物理学——原理、方法与应用 (北京: 原子能出版社) 第387—389页
Ding D Z, Ye C T, Zhao Z X 1996 Neutron Physics-Principles, Methods, and Applications (Beijing: Atomic Energy Press) pp387–389
[15] 卢希庭等 2000 原子核物理 (北京: 原子能出版社) 第263—267页
Lu X T 2000 Nuclear Physics (Beijing: Atomic Energy Press) pp263–267
[16] An Q, Bai H Y, Bao J, et al. 2017 J. Instrum. 12 7022Google Scholar
[17] Tang J Y, Fu S N, Jing H T, Tang H Q, Wei J, Xia H H 2010 Chin. Phys. C 34 121Google Scholar
[18] Jing H T, Tang J Y, Tang H Q, Xia H H, Liang T J, Zhou Z Y, Zhong Q P, Ruan X C 2010 Nucl. Instrum. Methods Phys. Res. , Sect. A 621 91Google Scholar
[19] 唐靖宇, 敬罕涛, 夏海鸿, 唐洪庆, 张闯, 周祖英, 阮锡超, 张奇玮, 杨征 2013 原子能科学技术 47 1089Google Scholar
Tang J Y, Jing H T, Xia H H, Tang H Q, Zhang C, Zhou Z Y, Ruan X C, Zhang Q W, Yang Z 2013 At. Energy Sci. Technol. 47 1089Google Scholar
[20] 任杰, 阮锡超, 唐洪庆, 葛智刚, 黄翰雄, 敬罕涛, 唐靖宇, 黄蔚玲 2014 核技术 37 100521Google Scholar
Ren J, Ruan X C, Tang H Q, Ge Z G, Huang H X, Jing H T, Tang J Y, Huang W L 2014 Nucl. Tech. 37 100521Google Scholar
[21] Chen Y H, Luan G Y, Bao J, et al. 2019 Eur. Phys. J. A 55 115Google Scholar
[22] 张奇玮, 栾广源, 任杰等 2021 物理学报 70 222801Google Scholar
Zhang Q W, Luan G Y, Ren J, et al. 2021 Acta Phys. Sin. 70 222801Google Scholar
[23] Heil M, Reifarth R, Fowler M M, et al. 2019 IEEE Trans. Nucl. Sci. 66 1095Google Scholar
[24] Wang Q, Cao P, Qi X, Yu T, Ji X, Xie L, An Q S 2018 Rev. Sci. Instrum. 89 013511Google Scholar
[25] 张奇玮, 贺国珠, 黄兴, 程品晶, 阮锡超, 朱兴华 2016 原子能科学技术 50 536Google Scholar
Zhang Q W, He G Z, Huang X, Cheng P J, Ruan X C, Zhu X H 2016 At. Energy Sci. Technol. 50 536Google Scholar
[26] 张奇玮, 贺国珠, 黄兴, 阮锡超, 李志宏, 朱兴华 2014 原子能科学技术 48 612Google Scholar
Zhang Q W, He G Z, Huang X, Ruan X C, Li Z H, Zhu X H 2014 At. Energy Sci. Technol. 48 612Google Scholar
[27] Fröhner F H 1980 Applied Neutron Resonance Theory (Karlsruhe: Kernforschungszentrum Karlsruhe GmbHP
[28] Lane A M, Thomas R G 1958 Rev. Mod. Phys. 30 257Google Scholar
[29] Larson N M 2008 Updated User’s Guide for Sammy: Multilevel R-Matrix Fits to Neutron Data Using Bayes’ Equations ORNL/TM-9179/R8 ENDF-364/R2
计量
- 文章访问数: 3594
- PDF下载量: 80
- 被引次数: 0