-
The 65 nm-microcontroller units (MCUs) are being widely used in critical terrestrial tests, and the risk from atmospheric neutron becomes more and more serious. The spallation neutron source contains broad energy spectrum, which is different from the mono-energetic neutron sources, and is the most ideal irradiation source for atmospheric neutron single event effect (SEE). Benefiting from China Spallation Neutron Source (CSNS), the atmospheric neutron SEE in 65 nm-MCUs is tested for the first time at the CSNS 9th beam line in China. The beam line is locatedin the 46° direction along the proton hitting the target, and the neutron spectrum is achieved to range from meV to 1.6 GeV. The test is conducted in two conditions in order to investigate the influence of thermal neutron. One is that the thermal neutrons are shielded with a 2-mm-thick cadmium slat at the beam ejection hole, and the other is not. The detected effects are single bit upset (SBU) events. 16 SBU events are detected when 5.3363 × 1017 protons hit the tungsten target without the thermal neutron, and 63 SBU events are recorded in the condition of 7.2131 × 1017 protons striking the target and thermal neutrons included. Comparing with the high energy neutron (>1 MeV), the SBU events caused by thermal neutron contribute about 65% of the number of total upset events. The test results preliminarily illustrate that the thermal neutrons dominate the 65 nm MCU reliability.
-
Keywords:
- 65 nm /
- thermal neutron /
- China Spallation Neutron Source /
- single event effect
[1] 蔡明辉, 韩建伟, 李小银, 李宏伟, 张振力 2009 物理学报 58 6659Google Scholar
Cai M H, Han J W, Li X Y, Li H W, Zhang Z L 2009 Acta Phys. Sin. 58 6659Google Scholar
[2] Leray J L 2007 Microelectron. Reliab. 47 1827Google Scholar
[3] Austin L, Saar D, Joseph J F, Carl C, Peter A 2005 IEEE Trans. Device Mater. Reliab. 5 317Google Scholar
[4] Baggio J, Lambert D, Ferlet-Cavrois V, Paillet P, Marcandella C, Duhamel O 2007 IEEE Trans. Nucl. Sci. 54 2149Google Scholar
[5] Lei Z F, Zhang Z G, En Y F, Huang Y 2018 Chin. Phys. B 27 066105Google Scholar
[6] TivaTM TM4 C1294 NCPDT. Microcontroller DATA SHEET
[7] 陈达, 贾文宝 2015 应用中子物理学 (北京: 科学出版社) 第44页
Chen D, Jia W B 2015 Applied Neutron Physics (Beijing: Science Press) p44 (in Chinese)
[8] 张紫霞, 魏志勇, 方美华, 杨永常, 陈国云 2009 装备环境工程 6 5Google Scholar
Zhang Z X, Wei Z Y, Fang M H, Yang Y C, Cheng G Y 2009 Eq. Environ. Eng. 6 5Google Scholar
[9] 杨善潮, 齐超, 刘岩, 郭晓强, 金晓明, 陈伟, 白小燕, 林东生, 王桂珍 2015 强激光与粒子束 27 4
Yang S C, Qi C, Liu Y, Guo X Q, Jin X M, Chen W, Bai X Y, Lin D S, Wang G Z 2015 High Pow. Las. Part. Beam 27 4
[10] Brookhaven National Laboratory, National Nulcear Data Center (NNDC), Evaluated Nuclear Data File (ENDF): https://www.nndc.bnl.gov/exfor/endf00.jsp[2019-5-16]
[11] 戴春娟, 刘希琴, 刘子利, 刘伯路 2013 物理学报 62 152801Google Scholar
Dai C J, Liu X Q, Liu Z L, Liu B L 2013 Acta Phys. Sin. 62 152801Google Scholar
[12] Kobayashi H, Kawamotom N, Kase J, Shiraish K 2009 IEEE International Reliability Physics Symposium Montreal, QC, Canada, April 26−30, 2009 p206
[13] Autran J L, Serre S, Semikh S, Munteanu D, Gasiot G, Roche P 2012 IEEE Trans. Nucl. Sci. 59 2658Google Scholar
[14] Clive D, Alex H, Karen F, Adam F, Peter T 2006 IEEE Trans. Nucl. Sci. 53 3596Google Scholar
[15] 陈冬梅, 孙旭朋, 钟征宇, 封国强, 白桦, 阳辉, 底桐 2018 航空科学技术 29 67
Chen D M, Sun X P, Zhong Z Y, Feng G Q, Bai H, Yang H, Di T 2018 Aeronau. Sci. Tech. 29 67
[16] JEDEC 2006 Measurement and Reporting of Alpha Particles and Terrestrial Cosmic RayInduced Soft Errors in Semiconductor Devices: JESD89 A, JEDEC STANDARD, JEDEC Solid State Technology Association
[17] Yang W T, Li Y, Li Y H, Hu Z L, Xie F, He C H, Wang S L, Zhou B, He H, Waseem K, Liang T J 2019 Microelectron. Reliab. 99 119Google Scholar
[18] IEC 62396-2 Process Management for Avionics—Atmospheric Radiation Effects Part 2: Guidelines for Single Event Effects Testing for Avionics Systems. IEC 2012
[19] 于全芝, 殷雯, 梁天骄 2011 物理学报 60 052501Google Scholar
Yu Q Z, Yin W, Liang T J 2011 Acta Phys. Sin. 60 052501Google Scholar
[20] 沈飞, 梁泰然, 殷雯, 于全芝, 左太森, 姚泽恩, 朱涛, 梁天骄 2014 物理学报 63 152801Google Scholar
Shen F, Liang T R, Yin W, Yu Q Z, Zuo T S, Yao Z E, Zhu T, Liang T J 2014 Acta Phys. Sin. 63 152801Google Scholar
[21] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹 2019 物理学报 68 052901Google Scholar
Wang X, Zhang F Q, Chen W, Guo X Q, Ding L L, Luo Y H 2019 Acta Phys. Sin. 68 052901Google Scholar
[22] Yang W T, Du X C, He C H, Shi S T, Cai L, Hui N, Guo G 2018 IEEE Trans. Nucl. Sci. 65 545Google Scholar
[23] Cecile W, Sabrine H, Nicolas G, Jaime S, Jerome B, Florent M, Maria M 2018 IEEE Trans. Nucl. Sci. 65 1851Google Scholar
[24] Wen S J, Pai S Y, Wong R, Romain M, Tam N 2010 IEEE International Integrated Reliability Workshop Final Report Fallen Leaf, CA, USA, Oct. 17−21, 2010 p31
[25] 田永顺, 胡志良, 童剑飞, 陈俊阳, 彭向阳, 梁天骄 2018 物理学报 67 142801Google Scholar
Tian Y S, Hu Z L, Tong J F, Chen J Y, Peng X Y, Liang T J 2018 Acta Phys. Sin. 67 142801Google Scholar
[26] SRIM 2013 Particle Interactions with Matter [Online]. Available: http://www.srim.org/[2019-5-4]
[27] Muhammad S, Chechenin N. G, Frank S, Usman A, Muhammad U, Zhu M, Khan 2017 Microelectron. Reliab. 78 11Google Scholar
-
图 1 半导体中各核素的中子反应截面 (a)与B, Si的同位素的反应截面, 对应中子能量范围10–11−1 MeV; (b)与14N, 16O, 27Al, 28Si, 184W的反应截面, 对应中子能量范围1−150 MeV
Fig. 1. Cross sections of different energy neutrons interacting with various nuclear atoms in semiconductor: (a) Cross sections of B and Si isotopes, the neutron energy interval is 10–11−1 MeV; (b) cross sections of 14N, 16O, 27Al, 28Si and 184W, the neutron energy interval is 1−150 MeV.
表 1 两组辐照下的实验数据
Table 1. The experiment data in two irradiations.
物理量 测试组 对照组 实验值 实验值 推导值 SBU次数 16 63 46 总质子数/p 5.3363 × 1017 7.2131 × 1017 5.3363 × 1017 中子注量/n·cm–2 镉上中子 7.6997 × 1010 1.0703 × 1011 7.9182 × 1010 热中子 1.2585 × 108 1.0062 × 1010 7.4440 × 109 -
[1] 蔡明辉, 韩建伟, 李小银, 李宏伟, 张振力 2009 物理学报 58 6659Google Scholar
Cai M H, Han J W, Li X Y, Li H W, Zhang Z L 2009 Acta Phys. Sin. 58 6659Google Scholar
[2] Leray J L 2007 Microelectron. Reliab. 47 1827Google Scholar
[3] Austin L, Saar D, Joseph J F, Carl C, Peter A 2005 IEEE Trans. Device Mater. Reliab. 5 317Google Scholar
[4] Baggio J, Lambert D, Ferlet-Cavrois V, Paillet P, Marcandella C, Duhamel O 2007 IEEE Trans. Nucl. Sci. 54 2149Google Scholar
[5] Lei Z F, Zhang Z G, En Y F, Huang Y 2018 Chin. Phys. B 27 066105Google Scholar
[6] TivaTM TM4 C1294 NCPDT. Microcontroller DATA SHEET
[7] 陈达, 贾文宝 2015 应用中子物理学 (北京: 科学出版社) 第44页
Chen D, Jia W B 2015 Applied Neutron Physics (Beijing: Science Press) p44 (in Chinese)
[8] 张紫霞, 魏志勇, 方美华, 杨永常, 陈国云 2009 装备环境工程 6 5Google Scholar
Zhang Z X, Wei Z Y, Fang M H, Yang Y C, Cheng G Y 2009 Eq. Environ. Eng. 6 5Google Scholar
[9] 杨善潮, 齐超, 刘岩, 郭晓强, 金晓明, 陈伟, 白小燕, 林东生, 王桂珍 2015 强激光与粒子束 27 4
Yang S C, Qi C, Liu Y, Guo X Q, Jin X M, Chen W, Bai X Y, Lin D S, Wang G Z 2015 High Pow. Las. Part. Beam 27 4
[10] Brookhaven National Laboratory, National Nulcear Data Center (NNDC), Evaluated Nuclear Data File (ENDF): https://www.nndc.bnl.gov/exfor/endf00.jsp[2019-5-16]
[11] 戴春娟, 刘希琴, 刘子利, 刘伯路 2013 物理学报 62 152801Google Scholar
Dai C J, Liu X Q, Liu Z L, Liu B L 2013 Acta Phys. Sin. 62 152801Google Scholar
[12] Kobayashi H, Kawamotom N, Kase J, Shiraish K 2009 IEEE International Reliability Physics Symposium Montreal, QC, Canada, April 26−30, 2009 p206
[13] Autran J L, Serre S, Semikh S, Munteanu D, Gasiot G, Roche P 2012 IEEE Trans. Nucl. Sci. 59 2658Google Scholar
[14] Clive D, Alex H, Karen F, Adam F, Peter T 2006 IEEE Trans. Nucl. Sci. 53 3596Google Scholar
[15] 陈冬梅, 孙旭朋, 钟征宇, 封国强, 白桦, 阳辉, 底桐 2018 航空科学技术 29 67
Chen D M, Sun X P, Zhong Z Y, Feng G Q, Bai H, Yang H, Di T 2018 Aeronau. Sci. Tech. 29 67
[16] JEDEC 2006 Measurement and Reporting of Alpha Particles and Terrestrial Cosmic RayInduced Soft Errors in Semiconductor Devices: JESD89 A, JEDEC STANDARD, JEDEC Solid State Technology Association
[17] Yang W T, Li Y, Li Y H, Hu Z L, Xie F, He C H, Wang S L, Zhou B, He H, Waseem K, Liang T J 2019 Microelectron. Reliab. 99 119Google Scholar
[18] IEC 62396-2 Process Management for Avionics—Atmospheric Radiation Effects Part 2: Guidelines for Single Event Effects Testing for Avionics Systems. IEC 2012
[19] 于全芝, 殷雯, 梁天骄 2011 物理学报 60 052501Google Scholar
Yu Q Z, Yin W, Liang T J 2011 Acta Phys. Sin. 60 052501Google Scholar
[20] 沈飞, 梁泰然, 殷雯, 于全芝, 左太森, 姚泽恩, 朱涛, 梁天骄 2014 物理学报 63 152801Google Scholar
Shen F, Liang T R, Yin W, Yu Q Z, Zuo T S, Yao Z E, Zhu T, Liang T J 2014 Acta Phys. Sin. 63 152801Google Scholar
[21] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹 2019 物理学报 68 052901Google Scholar
Wang X, Zhang F Q, Chen W, Guo X Q, Ding L L, Luo Y H 2019 Acta Phys. Sin. 68 052901Google Scholar
[22] Yang W T, Du X C, He C H, Shi S T, Cai L, Hui N, Guo G 2018 IEEE Trans. Nucl. Sci. 65 545Google Scholar
[23] Cecile W, Sabrine H, Nicolas G, Jaime S, Jerome B, Florent M, Maria M 2018 IEEE Trans. Nucl. Sci. 65 1851Google Scholar
[24] Wen S J, Pai S Y, Wong R, Romain M, Tam N 2010 IEEE International Integrated Reliability Workshop Final Report Fallen Leaf, CA, USA, Oct. 17−21, 2010 p31
[25] 田永顺, 胡志良, 童剑飞, 陈俊阳, 彭向阳, 梁天骄 2018 物理学报 67 142801Google Scholar
Tian Y S, Hu Z L, Tong J F, Chen J Y, Peng X Y, Liang T J 2018 Acta Phys. Sin. 67 142801Google Scholar
[26] SRIM 2013 Particle Interactions with Matter [Online]. Available: http://www.srim.org/[2019-5-4]
[27] Muhammad S, Chechenin N. G, Frank S, Usman A, Muhammad U, Zhu M, Khan 2017 Microelectron. Reliab. 78 11Google Scholar
计量
- 文章访问数: 8890
- PDF下载量: 117
- 被引次数: 0