搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于中国散裂中子源的商用静态随机存取存储器中子单粒子效应实验研究

王勋 张凤祁 陈伟 郭晓强 丁李利 罗尹虹

引用本文:
Citation:

基于中国散裂中子源的商用静态随机存取存储器中子单粒子效应实验研究

王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹

Experimental study on neutron single event effects of commercial SRAMs based on CSNS

Wang Xun, Zhang Feng-Qi, Chen Wei, Guo Xiao-Qiang, Ding Li-Li, Luo Yin-Hong
PDF
HTML
导出引用
  • 利用中国散裂中子源反角白光中子束线开展13款商用静态随机存取存储器的中子单粒子效应实验. 研究了测试图形、特征尺寸和版图工艺差异对单粒子效应的影响. 结果表明测试图形对器件的单粒子翻转截面影响不大, 但对部分器件的多单元翻转占比有较大的影响; 特征尺寸对器件单粒子翻转截面的影响没有明显的规律, 但对多单元翻转的影响规律明显, 多单元翻转占比和最大位数都随着特征尺寸的降低而增大; 器件版图工艺差异对器件的单粒子翻转截面和多单元翻转占比都有较大的影响. 此外, 通过与高原辐照实验结果对比, 发现在反角白光中子源获得的多单元翻转占比小于高原辐照实验的结果, 其原因是反角白光中子源实验中, 中子的最高能量和高能成分占比偏小, 且中子束流只有垂直入射. 因此, 利用反角白光中子源评估器件的大气中子单粒子效应时可能会低估多单元翻转情况. 本文的结果可为研究者利用反角白光中子源开展相关研究提供参考.
    The experiment of neutron single event effect was carried out at China Spallation Neutron Source (CSNS) back-n on 13 kinds of commercial SRAM. The single event upset (SEU) cross section of each device was obtained, and multiple cell upsets (MCU) were extracted from the SEUs using a statistical method without layout information. The influences of the test pattern, feature size and device layout on the SEU cross section and MCU were studied. The results show that the test pattern has little influence on the SEU cross section of the devices, but has a great influence on the MCU ratio of some devices. The feature size has influence both on the SEU cross section and the MCU ratio of the devices. The influence on SEU cross section is not definite. The influence on the MCU ratio is definite. Both the ratio and the maximum size of the MCUs increase with the decrease of the feature size. The difference of layout has great influence both on the SEU cross section and the MCU ratio of the device. In addition, compared with the results of plateau irradiation, the ratio of MCU in CSNS back-n is less than that of plateau irradiation. There are two reasons for this difference. One is that the energy spectrum of CSNS back-n is softer than that of the atmospheric neutron. The other is the neutron beam at CSNS back-n is perpendicular to the device under test. Therefore, evaluating the atmospheric neutron SEE using CSNS back-n line may underestimate the MCU ratio of the device under test. The experimental data, analytical methods and results obtained in this paper are valuable for the researchers to carry out the atmospheric neutron SEE test and the evaluation of devices on atmospheric neutron SEE.
      通信作者: 王勋, wangxun@nint.ac.cn
      Corresponding author: Wang Xun, wangxun@nint.ac.cn
    [1]

    Wrobel F, Palau J M, Calvet M C, Bersillon O, Duarte H 2000 IEEE Trans. Nucl. Sci. 47 2580Google Scholar

    [2]

    Hubert G, Bezerra F, Nicot J M, Artola L, Cheminet A, Valdivia J N, Mouret J M, Meyer J R, Cocquerez P 2014 IEEE Trans. Nucl. Sci. 61 1703Google Scholar

    [3]

    Autran J L, Munteanu D 2015 Microelectron. Reliab. 55 2147Google Scholar

    [4]

    Juan A C, Guillaume H, Francisco J F, Francesca V, Maud B, Hortensia M, Helmut P, Raoul V 2017 IEEE Trans. Nucl. Sci. 64 2188

    [5]

    Azambuja J R, Nazar G, Rech P, Carro L, Kastensmidt F L, Fairbanks T, Quinn H 2013 IEEE Trans. Nucl. Sci. 60 4243Google Scholar

    [6]

    Normand E 1996 IEEE Trans. Nucl. Sci. 43 2742Google Scholar

    [7]

    Quinn H, Graham P, Manuzzato A, Fairbanks T, Dallmann N, DesGeorges R 2010 IEEE Trans. Nucl. Sci. 57 3547

    [8]

    Abe S, Watanabe Y 2014 IEEE Trans. Nucl. Sci. 61 3519Google Scholar

    [9]

    Granlund T, Granbom B, Olsson N 2003 IEEE Trans. Nucl. Sci. 50 2065Google Scholar

    [10]

    Chen W, Guo X, Wang C, Zhang F, Qi C, Wang X, Jin X, Wei Y, Yang S, Song Z 2019 IEEE Trans. Nucl. Sci. 66 856Google Scholar

    [11]

    Lee U T, Monga S, Choi U, Lee J, Pae S 2018 IEEE Trans. Nucl. Sci. 65 1255Google Scholar

    [12]

    王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹 2019 物理学报 68 052901Google Scholar

    Wang X, Zhang F Q, Chen W, Guo X Q, Ding L L, Luo Y H 2019 Acta Phys. Sin. 68 052901Google Scholar

    [13]

    Dyer C S, Clucas S N, Sanderson C, Frydland A D, Green R T 2004 IEEE Trans. Nucl. Sci. 51 2817Google Scholar

    [14]

    Weulersse C, Guibbaud N, Beltrando A L, Galinat J, Beltrando C, Miller F, Trochet P, Alexandrescu D 2017 IEEE Trans. Nucl. Sci. 64 2268

    [15]

    郭晓强, 郭红霞, 王桂珍, 林东生, 陈伟, 白小燕, 杨善潮, 刘岩 2009 强激光与粒子束 21 1547

    Guo X Q, Guo H X, Wang G Z, Ling D S, Chen W, Bai X Y, Yang S C, Liu Y 2009 High Power Laser Particle Beams 21 1547

    [16]

    Yang W, Li Y, Li Y, Hu Z, Xie F, He C, Wang S, Zhou B, He H, Khan W, Liang T 2019 Microelectron. Reliab. 99 119Google Scholar

    [17]

    胡志良, 杨卫涛, 李永宏, 李洋, 贺朝会, 王松林, 周斌, 于全芝, 何欢, 谢飞, 白雨蓉, 梁天骄 2019 物理学报 68 238502Google Scholar

    Hu Z L, Yang W T, Li Y H, Li Y, He C H, Wang S L, Zhou B, Yu Q Z, He H, Xie F, Bai Y R, Liang T J 2019 Acta Phys. Sin. 68 238502Google Scholar

    [18]

    JEDEC, Measurement and Reporting of Alpha Particles and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices: JESD89 A, JEDEC STANDARD, vol.89, JEDEC Solid State Technology Association

    [19]

    Ni W, Jing H, Zhang L, Ou L 2018 Radiat. Phys. Chem. 152 43Google Scholar

    [20]

    鲍杰, 陈永浩, 张显鹏, 等 2019 物理学报 68 080101Google Scholar

    Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar

    [21]

    Ahlbin, J R, Atkinson N M, Gadlage M J, Gaspard N J, Bhuva B L, Loveless T D, Zhang E X, Chen L, Massengill L W 2011 IEEE Trans. Nucl. Sci. 58 2585Google Scholar

    [22]

    Lilja K, Bounasser M, Wen S J, et al. 2013 IEEE Trans. Nucl. Sci. 60 2782Google Scholar

    [23]

    He Y, Chen S, Chen J, Chi Y, Liang B, Liu B, Qin J, Du Y, Huang P 2012 IEEE Trans. Nucl. Sci. 59 2772Google Scholar

    [24]

    Atkinson N M, Witulski A F, Holman W T, et al. 2011 IEEE Trans. Nucl. Sci. 58 885Google Scholar

    [25]

    Wang X, Ding L, Luo Y, Chen W, Zhang F, Guo X 2020 IEEE Trans. Nucl. Sci. 67 1443Google Scholar

    [26]

    王勋, 罗尹虹, 丁李利, 张凤祁, 陈伟, 郭晓强, 王坦 2020 原子能科学技术Google Scholar

    Wang X, Luo Y H, Ding L L, Zhang F Q, Chen W, Guo X Q, Wang T 2020 Atom. Energy Sci. Technol.Google Scholar

    [27]

    Radaelli D, Puchner H, Wong S, Daniel S 2005 IEEE Trans. Nucl. Sci. 52 2433Google Scholar

    [28]

    Yasuo Y, Hironaru Y, Eishi I, Hideaki K, Masatoshi S, Takashi A, Shigehisa Y 2007 IEEE Trans. Nucl. Sci. 54 1030Google Scholar

    [29]

    Zhang Z G, Liu J, Hou M D, et al. 2013 Chin. Phys. B 22 086102Google Scholar

    [30]

    Ikeda N, Kuboyama S, Matsuda S, Handa T 2005 IEEE Trans. Nucl. Sci. 52 2200Google Scholar

  • 图 1  CSNS反角白光中子源实验终端布局[19]

    Fig. 1.  Layout of back-n at CSNS[19].

    图 2  CSNS反角白光中子源终端2与羊八井大气中子微分能谱对比

    Fig. 2.  Comparison between the differential neutron energy spectra of CSNS back-n and Yangbajing.

    图 3  CSNS反角白光中子源辐照实验布局示意图

    Fig. 3.  Layout of the irradiation experiment at CSNS back-n

    图 4  不同测试图形下测得的器件SEU截面对比

    Fig. 4.  Comparison between the SEE cross sections of devices with different test patterns.

    图 5  不同厂商相同特征尺寸SRAM器件SEU截面对比 (a) 350 nm SRAM; (b) 130 nm SRAM; (c) 65 nm SRAM

    Fig. 5.  Comparison of the SEE cross sections of the devices with the same feature sizes from different manufacturer: (a) 350 nm SRAM; (b) 130 nm SRAM; (c) 65 nm SRAM.

    图 6  同一厂商系列不同特征尺寸SRAM器件SEU截面对比 (a) HITECHI/RENESAS HM系列SRAM; (b) Cypress CY1318系列SRAM;(c) Cypress CY62126系列SRAM; (d) ISSI IS6X系列SRAM

    Fig. 6.  Comparison of the SEE cross sections of devices from the same manufacturer with different feature sizes: (a) HITECHI/RENESAS HM SRAM; (b) Cypress CY1318SRAM; (c) Cypress CY62126SRAM; (d) ISSI IS6X SRAM

    图 7  不同测试图形下MCU占比 (a) IS61WV204816(40 nm); (b) CY62126DV(130 nm); (c) HM62V8100 (180 nm); (d) IS64WV25616 (65 nm)

    Fig. 7.  MCU rates of the devices with different test patterns: (a) IS61WV204816(40 nm); (b) CY62126DV(130 nm); (c) HM62V8100 (180 nm); (d) IS64WV25616 (65 nm)

    图 8  不同厂商相同特征尺寸SRAM器件MCU情况

    Fig. 8.  MCU rates and sizes of the devices with the same feature sizes from different manufacturer.

    图 9  同一厂商系列不同特征尺寸SRAM器件MCU情况 (a) CY7C1318系列不同特征尺寸MCU情况; (b) IS6X系列不同特征尺寸MCU情况

    Fig. 9.  MCU rates and sizes of the devices from the same manufacturer with different feature sizes: (a) CY7C1318; (b) IS6X

    表 1  待测SRAM器件参数

    Table 1.  Parameters of the SRAM devices for test.

    型号制造商容量/bits特征尺寸/nm工作电压/V
    HM628512AHITACHI4 M (512 K × 8)5005
    HM628512BHITACHI4 M (512 K × 8)3503.3
    HM62V8100RENESAS8 M (1 M × 8)1803.3
    IS62WV1288ISSI1 M (128 K × 8)1303.3
    IS64WV25616ISSI4 M (256 K × 16)653.3
    IS61WV204816ISSI32 M (2 M × 16)403.3
    CY62126VCypress1 M (64 K × 16)3503.0
    CY62126BVCypress1 M (64 K × 16)2503.0
    CY62126DVCypress1 M (64 K × 16)1303.0
    CY7C1318AV18Cypress18 M (1 M × 18)1501.8
    CY7C1318BV18Cypress18 M (1 M × 18)901.8
    CY7C1318KV18Cypress18 M (1 M × 18)651.8
    M328C国产256 K (32 K × 8)651.8
    下载: 导出CSV

    表 2  在CSNS反角白光中子源的SEU测试结果

    Table 2.  Test results of the SEUs at CSNS back-n.

    型号特征尺寸/nm测试图形容量/Mbit注量(>10 MeV)/108 n·cm–2翻转数/#翻转截面/10-14cm2·bit–1不确定度/%
    HM628512A5000x00H125.541762.5212.88
    0x55H127.212622.8912.13
    0xAAH125.382153.1812.47
    0xFFH125.362053.0412.56
    HM628512B3500x00H125.712072.8812.54
    0x55H87.031973.3412.64
    0xAAH128.973032.6911.92
    0xFFH123.261142.7814.03
    HM62V81001800x00H245.313432.5711.75
    0x55H245.293672.7611.67
    0xAAH245.293872.9111.61
    0xFFH245.363422.5311.76
    IS62WV12881300x00H19.52555.5117.05
    0xAAH38.051164.5813.97
    0xFFH310.201514.6813.24
    IS64WV25616650x00H84.762716.7912.08
    0x55H84.763398.4911.77
    0xAAH85.233818.6811.63
    0xFFH84.502757.2812.06
    IS61WV204816400x00H644.765341.6711.30
    0x55H644.765231.6411.32
    0xAAH644.765891.8411.22
    0xFFH646.357071.6611.10
    CY62126V3500x55H39.88642.0616.29
    0xAAH39.88712.2815.81
    CY62126BV2500x55H3128.005161.2811.33
    CY62126DV1300x00H310.401153.5314.00
    0x55H310.601394.1613.45
    0xAAH310.401414.3013.41
    0xFFH39.041063.7314.26
    CY7C1318AV181500X55H325.1212937.5210.80
    CY7C1318BV18900X55H324.693812.4211.63
    CY7C1318KV18650X55H325.093742.1911.65
    M328C650X55H0.751161671.8413.00
    下载: 导出CSV

    表 3  单粒子MCU提取结果

    Table 3.  Extraction results of the single event multiple cell upsets.

    型号特征尺寸/nm不同测试图形时MCU占比最大MCU位数
    0x000x55H0xAAH0xFFH
    HM628512A50000001
    HM628512B35000001
    HM62V81001802.33%5.94%1.09%4.68%2
    IS62WV128813004.65%02
    IS64WV25616659.59%9.14%6.01%0.73%3
    IS61WV2048164028.29%24.09%28.52%25.00%7
    CY62126V35000001
    CY62126BV25000001
    CY62126DV13040.00%35.97%35.46%45.28%3
    CY7C1318AV1815036.13%4
    CY7C1318BV189042.31%6
    CY7C1318KV186556.80%7
    M328C6514.37%2
    下载: 导出CSV
  • [1]

    Wrobel F, Palau J M, Calvet M C, Bersillon O, Duarte H 2000 IEEE Trans. Nucl. Sci. 47 2580Google Scholar

    [2]

    Hubert G, Bezerra F, Nicot J M, Artola L, Cheminet A, Valdivia J N, Mouret J M, Meyer J R, Cocquerez P 2014 IEEE Trans. Nucl. Sci. 61 1703Google Scholar

    [3]

    Autran J L, Munteanu D 2015 Microelectron. Reliab. 55 2147Google Scholar

    [4]

    Juan A C, Guillaume H, Francisco J F, Francesca V, Maud B, Hortensia M, Helmut P, Raoul V 2017 IEEE Trans. Nucl. Sci. 64 2188

    [5]

    Azambuja J R, Nazar G, Rech P, Carro L, Kastensmidt F L, Fairbanks T, Quinn H 2013 IEEE Trans. Nucl. Sci. 60 4243Google Scholar

    [6]

    Normand E 1996 IEEE Trans. Nucl. Sci. 43 2742Google Scholar

    [7]

    Quinn H, Graham P, Manuzzato A, Fairbanks T, Dallmann N, DesGeorges R 2010 IEEE Trans. Nucl. Sci. 57 3547

    [8]

    Abe S, Watanabe Y 2014 IEEE Trans. Nucl. Sci. 61 3519Google Scholar

    [9]

    Granlund T, Granbom B, Olsson N 2003 IEEE Trans. Nucl. Sci. 50 2065Google Scholar

    [10]

    Chen W, Guo X, Wang C, Zhang F, Qi C, Wang X, Jin X, Wei Y, Yang S, Song Z 2019 IEEE Trans. Nucl. Sci. 66 856Google Scholar

    [11]

    Lee U T, Monga S, Choi U, Lee J, Pae S 2018 IEEE Trans. Nucl. Sci. 65 1255Google Scholar

    [12]

    王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹 2019 物理学报 68 052901Google Scholar

    Wang X, Zhang F Q, Chen W, Guo X Q, Ding L L, Luo Y H 2019 Acta Phys. Sin. 68 052901Google Scholar

    [13]

    Dyer C S, Clucas S N, Sanderson C, Frydland A D, Green R T 2004 IEEE Trans. Nucl. Sci. 51 2817Google Scholar

    [14]

    Weulersse C, Guibbaud N, Beltrando A L, Galinat J, Beltrando C, Miller F, Trochet P, Alexandrescu D 2017 IEEE Trans. Nucl. Sci. 64 2268

    [15]

    郭晓强, 郭红霞, 王桂珍, 林东生, 陈伟, 白小燕, 杨善潮, 刘岩 2009 强激光与粒子束 21 1547

    Guo X Q, Guo H X, Wang G Z, Ling D S, Chen W, Bai X Y, Yang S C, Liu Y 2009 High Power Laser Particle Beams 21 1547

    [16]

    Yang W, Li Y, Li Y, Hu Z, Xie F, He C, Wang S, Zhou B, He H, Khan W, Liang T 2019 Microelectron. Reliab. 99 119Google Scholar

    [17]

    胡志良, 杨卫涛, 李永宏, 李洋, 贺朝会, 王松林, 周斌, 于全芝, 何欢, 谢飞, 白雨蓉, 梁天骄 2019 物理学报 68 238502Google Scholar

    Hu Z L, Yang W T, Li Y H, Li Y, He C H, Wang S L, Zhou B, Yu Q Z, He H, Xie F, Bai Y R, Liang T J 2019 Acta Phys. Sin. 68 238502Google Scholar

    [18]

    JEDEC, Measurement and Reporting of Alpha Particles and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices: JESD89 A, JEDEC STANDARD, vol.89, JEDEC Solid State Technology Association

    [19]

    Ni W, Jing H, Zhang L, Ou L 2018 Radiat. Phys. Chem. 152 43Google Scholar

    [20]

    鲍杰, 陈永浩, 张显鹏, 等 2019 物理学报 68 080101Google Scholar

    Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar

    [21]

    Ahlbin, J R, Atkinson N M, Gadlage M J, Gaspard N J, Bhuva B L, Loveless T D, Zhang E X, Chen L, Massengill L W 2011 IEEE Trans. Nucl. Sci. 58 2585Google Scholar

    [22]

    Lilja K, Bounasser M, Wen S J, et al. 2013 IEEE Trans. Nucl. Sci. 60 2782Google Scholar

    [23]

    He Y, Chen S, Chen J, Chi Y, Liang B, Liu B, Qin J, Du Y, Huang P 2012 IEEE Trans. Nucl. Sci. 59 2772Google Scholar

    [24]

    Atkinson N M, Witulski A F, Holman W T, et al. 2011 IEEE Trans. Nucl. Sci. 58 885Google Scholar

    [25]

    Wang X, Ding L, Luo Y, Chen W, Zhang F, Guo X 2020 IEEE Trans. Nucl. Sci. 67 1443Google Scholar

    [26]

    王勋, 罗尹虹, 丁李利, 张凤祁, 陈伟, 郭晓强, 王坦 2020 原子能科学技术Google Scholar

    Wang X, Luo Y H, Ding L L, Zhang F Q, Chen W, Guo X Q, Wang T 2020 Atom. Energy Sci. Technol.Google Scholar

    [27]

    Radaelli D, Puchner H, Wong S, Daniel S 2005 IEEE Trans. Nucl. Sci. 52 2433Google Scholar

    [28]

    Yasuo Y, Hironaru Y, Eishi I, Hideaki K, Masatoshi S, Takashi A, Shigehisa Y 2007 IEEE Trans. Nucl. Sci. 54 1030Google Scholar

    [29]

    Zhang Z G, Liu J, Hou M D, et al. 2013 Chin. Phys. B 22 086102Google Scholar

    [30]

    Ikeda N, Kuboyama S, Matsuda S, Handa T 2005 IEEE Trans. Nucl. Sci. 52 2200Google Scholar

  • [1] 李强, 李样, 吕游, 潘子文, 鲍煜. 中国散裂中子源缪子谱仪及其应用展望. 物理学报, 2024, 73(19): 197602. doi: 10.7498/aps.73.20240926
    [2] 张战刚, 杨少华, 林倩, 雷志锋, 彭超, 何玉娟. 基于青藏高原的14 nm FinFET和28 nm平面CMOS工艺SRAM单粒子效应实时测量试验. 物理学报, 2023, 72(14): 146101. doi: 10.7498/aps.72.20230161
    [3] 刘晔, 郭红霞, 琚安安, 张凤祁, 潘霄宇, 张鸿, 顾朝桥, 柳奕天, 冯亚辉. 质子辐照作用下浮栅单元的数据翻转及错误退火. 物理学报, 2022, 71(11): 118501. doi: 10.7498/aps.71.20212405
    [4] 张江林, 姜炳, 陈永浩, 郭子安, 王小鹤, 蒋伟, 易晗, 韩建龙, 胡继峰, 唐靖宇, 陈金根, 蔡翔舟. 基于中国散裂中子源反角白光中子束线的天然锂中子全截面测量. 物理学报, 2022, 71(5): 052901. doi: 10.7498/aps.71.20211646
    [5] 张奇玮, 栾广源, 任杰, 阮锡超, 贺国珠, 鲍杰, 孙琪, 黄翰雄, 王朝辉, 顾旻皓, 余滔, 解立坤, 陈永浩, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 韩长材, 韩子杰, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 蒋伟, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 羊奕伟, 易晗, 于莉, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏, 朱兴华. 基于CSNS反角白光中子源的中子俘获反应截面测量技术研究. 物理学报, 2021, 70(22): 222801. doi: 10.7498/aps.70.20210742
    [6] 罗尹虹, 张凤祁, 郭红霞, Wojtek Hajdas. 基于重离子试验数据预测纳米加固静态随机存储器质子单粒子效应敏感性. 物理学报, 2020, 69(1): 018501. doi: 10.7498/aps.69.20190878
    [7] 黎华梅, 侯鹏飞, 王金斌, 宋宏甲, 钟向丽. HfO2基铁电场效应晶体管读写电路的单粒子翻转效应模拟. 物理学报, 2020, 69(9): 098502. doi: 10.7498/aps.69.20200123
    [8] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [9] 鲍杰, 陈永浩, 张显鹏, 栾广源, 任杰, 王琦, 阮锡超, 张凯, 安琪, 白怀勇, 曹平, 陈琪萍, 程品晶, 崔增琪, 樊瑞睿, 封常青, 顾旻皓, 郭凤琴, 韩长材, 韩子杰, 贺国珠, 何泳成, 何越峰, 黄翰雄, 黄蔚玲, 黄锡汝, 季筱路, 吉旭阳, 江浩雨, 蒋伟, 敬罕涛, 康玲, 康明涛, 兰长林, 李波, 李论, 李强, 李晓, 李阳, 李样, 刘荣, 刘树彬, 刘星言, 马应林, 宁常军, 聂阳波, 齐斌斌, 宋朝晖, 孙虹, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 王鹏程, 王涛峰, 王艳凤, 王朝辉, 王征, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 杨毅, 易晗, 于莉, 余滔, 于永积, 张国辉, 张旌, 张林浩, 张利英, 张清民, 张奇伟, 张玉亮, 张志永, 赵映潭, 周良, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子束流参数的初步测量. 物理学报, 2019, 68(8): 080101. doi: 10.7498/aps.68.20182191
    [10] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 中国散裂中子源在大气中子单粒子效应研究中的应用评估. 物理学报, 2019, 68(5): 052901. doi: 10.7498/aps.68.20181843
    [11] 胡志良, 杨卫涛, 李永宏, 李洋, 贺朝会, 王松林, 周斌, 于全芝, 何欢, 谢飞, 白雨蓉, 梁天骄. 应用中国散裂中子源9号束线端研究65 nm微控制器大气中子单粒子效应. 物理学报, 2019, 68(23): 238502. doi: 10.7498/aps.68.20191196
    [12] 张战刚, 雷志锋, 岳龙, 刘远, 何玉娟, 彭超, 师谦, 黄云, 恩云飞. 空间高能离子在纳米级SOI SRAM中引起的单粒子翻转特性及物理机理研究. 物理学报, 2017, 66(24): 246102. doi: 10.7498/aps.66.246102
    [13] 罗尹虹, 郭晓强, 陈伟, 郭刚, 范辉. 欧空局监测器单粒子翻转能量和角度相关性. 物理学报, 2016, 65(20): 206103. doi: 10.7498/aps.65.206103
    [14] 罗尹虹, 张凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞. 纳米静态随机存储器低能质子单粒子翻转敏感性研究. 物理学报, 2016, 65(6): 068501. doi: 10.7498/aps.65.068501
    [15] 沈飞, 梁泰然, 殷雯, 于全芝, 左太森, 姚泽恩, 朱涛, 梁天骄. 中国散裂中子源多功能反射谱仪屏蔽设计. 物理学报, 2014, 63(15): 152801. doi: 10.7498/aps.63.152801
    [16] 王晓晗, 郭红霞, 雷志锋, 郭刚, 张科营, 高丽娟, 张战刚. 基于蒙特卡洛和器件仿真的单粒子翻转计算方法. 物理学报, 2014, 63(19): 196102. doi: 10.7498/aps.63.196102
    [17] 丁李利, 郭红霞, 陈伟, 闫逸华, 肖尧, 范如玉. 累积辐照影响静态随机存储器单粒子翻转敏感性的仿真研究. 物理学报, 2013, 62(18): 188502. doi: 10.7498/aps.62.188502
    [18] 于全芝, 殷雯, 梁天骄. 中国散裂中子源靶站重要部件的辐照损伤计算与分析. 物理学报, 2011, 60(5): 052501. doi: 10.7498/aps.60.052501
    [19] 张科营, 郭红霞, 罗尹虹, 何宝平, 姚志斌, 张凤祁, 王园明. 静态随机存储器单粒子翻转效应三维数值模拟. 物理学报, 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [20] 张庆祥, 侯明东, 刘 杰, 王志光, 金运范, 朱智勇, 孙友梅. 静态随机存储器单粒子效应的角度影响研究. 物理学报, 2004, 53(2): 566-570. doi: 10.7498/aps.53.566
计量
  • 文章访问数:  6513
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-23
  • 修回日期:  2020-05-18
  • 上网日期:  2020-05-20
  • 刊出日期:  2020-08-20

/

返回文章
返回