搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国散裂中子源缪子谱仪及其应用展望

李强 李样 吕游 潘子文 鲍煜

引用本文:
Citation:

中国散裂中子源缪子谱仪及其应用展望

李强, 李样, 吕游, 潘子文, 鲍煜

Muon spectrometers on the China Spallation Neutron Source and its application prospects

Qiang Li, Yang Li, You Lv, Ziwen Pan, Yu Bao
PDF
导出引用
  • 中国散裂中子源二期升级工程包含建设缪子实验终端和一条表面缪子束线,并规划未来建设负缪子束线和衰变缪子束线。表面缪子束线预计2029年建成出束,有望成为我国首个人造缪子源实验平台。缪子自旋弛豫/旋转/共振谱学和负缪子X射线分析谱学是缪子源平台最重要的应用技术,分别在材料磁性分析和元素成分无损测量方面有独特优点,在磁性、超导、新能源、科技考古等多学科领域取得了大量瞩目成果。本文围绕中国散裂中子源缪子实验终端及其谱仪建设,分别介绍了缪子自旋弛豫/旋转/共振谱学和负缪子X射线分析谱学的基本原理、特色优势,以及基于缪子实验终端的谱仪物理设计和应用展望。文章最后,展望了该缪子实验终端未来的缪子束线规划和更多样化的应用场景。
    The China Spallation Neutron Source Phase-II Project (CSNS-II) includes the construction of a muon source, namely “Muon station for sciEnce technoLOgy and inDustrY” (MELODY). A muon target station and a surface muon beam line are on the schedule to be completed in 2029, making MELODY the first Chinese muon facility. This beam line is mainly focused on the application of muon spin relaxation/rotation/resonance (μSR) spectroscopy. MELODY also reserves tunnels to build a negative muon beam line and a decay muon beam line in the future to further extend the research field into muon-induced X-ray emission (MIXE) elemental analysis and μSR measurements in thick cells, respectively. The two types of material characterization technologies keep their uniqueness in multi-disciplinary researches, and also provide complementary insights for other techniques, such as neutron scattering, nuclear magnetic resonance, and X-ray fluorescence analysis, etc.
    The μSR spectroscopy is a well-established technology that implants highly spin polarized muon beams into various types of materials. The subsequent precession and relaxation of muon spins in their surrounding atomic environment reflect the static and dynamical properties of the material of interest, and then are measured by detecting asymmetrically emitted positrons decaying from those muons with an average lifetime of around 2.2 μs. This enables μSR to develop into a powerful quantum magnetic probe to investigate materials concerning magnetism, superconductivity, and molecular dynamics. The bounding of a positive muon and an electron, knowns as muonium, making it a unique and sensitive probe in the study of semiconductors, new energy materials, free radical chemistry, etc. As the production of muon beams strongly rely on proton accelerators, only five muon facilities worldwide are available for μSR experiments. This limits the application of muon related sciences in a large scale. Particularly, Chinese researchers face fierce competence to apply for precious and limited muon beam time only from international muon sources to characterize key properties of their materials.
    The construction of MELODY muon facility at CSNS-II aims to provide intense and pulsed muon beams for Chinese and international users to conduct their μSR measurements with good quality data in a low repetition rate operation mode. To achieve this goal, as shown in Figure 1, the μSR spectrometer is designed with: 1) over 3000 detector units to obtain a sufficient counting rate of 80 Million/h to significantly suppress statistical fluctuations in a short measuring time; 2) a high asymmetry of 0.3 to greatly amplify μSR signals so as to further reduce statistical fluctuations; 3) extendable low temperature devices to cover most μSR applications and also fulfill experiments with extreme condition requirements.
    The MIXE elemental analysis is a type of particle induced X-ray emission (PIXE) technologies. Due to the heavier mass of negative muons, the energy of muonic X-rays is around 207 higher than that of X-ray or electron induced fluorescence X-rays. Thus, the MIXE technology is more sensitive to materials with low atomic numbers, and thick samples can be effectively studied without scratching their surfaces. Due to these advantages, MIXE has been successfully applied in the elemental analysis of cultural heritages, meteorites, and Li-ion batteries, etc. MELODY reserves tunnels for negative muon extractions and transport to a MIXE terminal. The research group for MELODY is under the development of new detection technology with high energy resolution and high counting capability to reduce the measuring time into acceptable amount based on the 1-Hz repetition rate of muon pulses.
    μSR spectroscopy and MIXE are the two most important application fields of accelerator muon beams. The MELODY muon facility aims to develop and promote these technologies in China with dedicated muon beam lines to be constructed in CSNS-II and in the future. In this overview, we introduce the principles and advantages of the μSR and MIXE technologies, as well as the physical design and application prospects of the μSR and MIXE spectrometers based on the CSNS-II muon source. Finally, the future muon beamline upgrade and more wider applications on the CSNS-II muon source are discussed and desired.
  • [1]

    Neddermeyer S H, Anderson C D 1937 Phys. Rev. 51 884

    [2]

    Conversi M, Pancini E, Piccioni O 1947 Phys. Rev. 71 209

    [3]

    Meyer S L, Anderson E W, Bleser E, Lederman I M, Rosen J L, Rothberg J, Wang I T 1963 Phys. Rev. 132 2693

    [4]

    Tang J, Li L, Yuan Y 2021 Physics 50 239 (in Chinese) [唐健,李亮,袁野 2021 物理 50 239]

    [5]

    Baldini A M, Bao Y, Baracchini E, Bemporad C, Berg F, Biasotti M, Boca G, Cascella M, Cattaneo P W, Cavoto G, Cei F, Cerri C, Chiarello G, Chiri C, Corvaglia A, de Bari A, De Gerone M, Doke T, D’Onofrio A, Dussoni S, Egger J, Fujii Y, Galli L, Gatti F, Grancagnolo F, Grassi M, Graziosi A, Grigoriev D N, Haruyama T, Hildebrandt M, Hodge Z, Ieki K, Ignatov F, Iwamoto T, Kaneko D, Kang T I, Kettle P R, Khazin B I, Khomutov N, Korenchenko A, Kravchuk N, Lim G M A, Maki A, Mihara S, Molzon W, Mori T, Morsani F, Mtchedilishvili A, Mzavia D, Nakaura S, Nardò R, Nicolò D, Nishiguchi H, Nishimura M, Ogawa S, Ootani W, Orito S, Panareo M, Papa A, Pazzi R, Pepino A, Piredda G, Pizzigoni G, Popov A, Raffaelli F, Renga F, Ripiccini E, Ritt S, Rossella M, Rutar G, Sawada R, Sergiampietri F, Signorelli G, Simonetta M, Tassielli G F, Tenchini F, Uchiyama Y, Venturini M, Voena C, Yamamoto A, Yoshida K, You Z, Yudin Yu V, Zanello D 2016 Eur. Phys. J. C 76 434

    [6]

    Bellgardt U, Otter G, Eichler R, Felawka L, Niebuhr C, Walter H K, Bertl W, Lordong N, Martino J, Egli S, Engfer R, Grab Ch, Grossmann-Handschin M, Hermes E A, Kraus N, Muheim F, Pruys H, Van Der Schaaf A, Vermeulen D 1988 Nucl. Phys. B 299 1

    [7]

    Bertl W, Engfer R, Hermes E A, Kurz G, Kozlowski T, Kuth J, Otter G, Rosenbaum F, Ryskulov N M, van der Schaaf A, Wintz P, Zychor I, The SINDRUM II Collaboration 2006 Eur. Phys. J. C 47 337

    [8]

    Hincks E P, Pontecorvo B 1948 Phys. Rev. 73 257

    [9]

    Aoyama T, Asmussen N, Benayoun M, Bijnens J, Blum T, Bruno M, Caprini I, Carloni Calame C M, Cè M, Colangelo G, Curciarello F, Czyż H, Danilkin I, Davier M, Davies C T H, Della Morte M, Eidelman S I, El-Khadra A X, Gérardin A, Giusti D, Golterman M, Gottlieb S, Gülpers V, Hagelstein F, Hayakawa M, Herdoíza G, Hertzog D W, Hoecker A, Hoferichter M, Hoid B L, Hudspith R J, Ignatov F, Izubuchi T, Jegerlehner F, Jin L, Keshavarzi A, Kinoshita T, Kubis B, Kupich A, Kupść A, Laub L, Lehner C, Lellouch L, Logashenko I, Malaescu B, Maltman K, Marinković M K, Masjuan P, Meyer A S, Meyer H B, Mibe T, Miura K, Müller S E, Nio M, Nomura D, Nyffeler A, Pascalutsa V, Passera M, Perez del Rio E, Peris S, Portelli A, Procura M, Redmer C F, Roberts B L, Sánchez-Puertas P, Serednyakov S, Shwartz B, Simula S, Stöckinger D, Stöckinger-Kim H, Stoffer P, Teubner T, Van de Water R, Vanderhaeghen M, Venanzoni G, von Hippel G, Wittig H, Zhang Z, Achasov M N, Bashir A, Cardoso N, Chakraborty B, Chao E H, Charles J, Crivellin A, Deineka O, Denig A, DeTar C, Dominguez C A, Dorokhov A E, Druzhinin V P, Eichmann G, Fael M, Fischer C S, Gámiz E, Gelzer Z, Green J R, Guellati-Khelifa S, Hatton D, Hermansson-Truedsson N, Holz S, Hörz B, Knecht M, Koponen J, Kronfeld A S, Laiho J, Leupold S, Mackenzie P B, Marciano W J, McNeile C, Mohler D, Monnard J, Neil E T, Nesterenko A V, Ottnad K, Pauk V, Radzhabov A E, de Rafael E, Raya K, Risch A, Rodríguez-Sánchez A, Roig P, San José T, Solodov E P, Sugar R, Todyshev K Yu, Vainshtein A, Vaquero Avilés-Casco A, Weil E, Wilhelm J, Williams R, Zhevlakov A S 2020 Phys. Rep. 887 1

    [10]

    Abe M, Bae S, Beer G, Bunce G, Choi H, Choi S, Chung M, da Silva W, Eidelman S, Finger M, Fukao Y, Fukuyama T, Haciomeroglu S, Hasegawa K, Hayasaka K, Hayashizaki N, Hisamatsu H, Iijima T, Iinuma H, Ikeda H, Ikeno M, Inami K, Ishida K, Itahashi T, Iwasaki M, Iwashita Y, Iwata Y, Kadono R, Kamal S, Kamitani T, Kanda S, Kapusta F, Kawagoe K, Kawamura N, Kim B, Kim Y, Kishishita T, Kitamura R, Ko H, Kohriki T, Kondo Y, Kume T, Lee M J, Lee S, Lee W, Marshall G M, Matsuda Y, Mibe T, Miyake Y, Murakami T, Nagamine K, Nakayama H, Nishimura S, Nomura D, Ogitsu T, Ohsawa S, Oide K, Oishi Y, Okada S, Olin A, Omarov Z, Otani M, Razuvaev G, Rehman A, Saito N, Saito N F, Sasaki K, Sasaki O, Sato N, Sato Y, Semertzidis Y K, Sendai H, Shatunov Y, Shimomura K, Shoji M, Shwartz B, Strasser P, Sue Y, Suehara T, Sung C, Suzuki K, Takatomi T, Tanaka M, Tojo J, Tsutsumi Y, Uchida T, Ueno K, Wada S, Won E, Yamaguchi H, Yamanaka T, Yamamoto A, Yamazaki T, Yasuda H, Yoshida M, Yoshioka T 2019 Prog. Theor. Exp. Phys. 2019 053C02

    [11]

    Bennett G W, Bousquet B, Brown H N, Bunce G, Carey R M, Cushman P, Danby G T, Debevec P T, Deile M, Deng H, Deninger W, Dhawan S K, Druzhinin V P, Duong L, Efstathiadis E, Farley F J M, Fedotovich G V, Giron S, Gray F E, Grigoriev D, Grosse-Perdekamp M, Grossmann A, Hare M F, Hertzog D W, Huang X, Hughes V W, Iwasaki M, Jungmann K, Kawall D, Kawamura M, Khazin B I, Kindem J, Krienen F, Kronkvist I, Lam A, Larsen R, Lee Y Y, Logashenko I, McNabb R, Meng W, Mi J, Miller J P, Mizumachi Y, Morse W M, Nikas D, Onderwater C J G, Orlov Y, Özben C S, Paley J M, Peng Q, Polly C C, Pretz J, Prigl R, zu Putlitz G, Qian T, Redin S I, Rind O, Roberts B L, Ryskulov N, Sedykh S, Semertzidis Y K, Shagin P, Shatunov Yu M, Sichtermann E P, Solodov E, Sossong M, Steinmetz A, Sulak L R, Timmermans C, Trofimov A, Urner D, von Walter P, Warburton D, Winn D, Yamamoto A, Zimmerman D 2009 Phys. Rev. D 80 52008

    [12]

    Bennett G W, Bousquet B, Brown H N, Bunce G, Carey R M, Cushman P, Danby G T, Debevec P T, Deile M, Deng H, Deninger W, Dhawan S K, Druzhinin V P, Duong L, Efstathiadis E, Farley F J M, Fedotovich G V, Giron S, Gray F E, Grigoriev D, Grosse-Perdekamp M, Grossmann A, Hare M F, Hertzog D W, Huang X, Hughes V W, Iwasaki M, Jungmann K, Kawall D, Kawamura M, Khazin B I, Kindem J, Krienen F, Kronkvist I, Lam A, Larsen R, Lee Y Y, Logashenko I, McNabb R, Meng W, Mi J, Miller J P, Mizumachi Y, Morse W M, Nikas D, Onderwater C J G, Orlov Y, Özben C S, Paley J M, Peng Q, Polly C C, Pretz J, Prigl R, zu Putlitz G, Qian T, Redin S I, Rind O, Roberts B L, Ryskulov N, Sedykh S, Semertzidis Y K, Shagin P, Shatunov Yu M, Sichtermann E P, Solodov E, Sossong M, Steinmetz A, Sulak L R, Timmermans C, Trofimov A, Urner D, von Walter P, Warburton D, Winn D, Yamamoto A, Zimmerman D 2006 Phys. Rev. D 73 72003

    [13]

    Abi B, Albahri T, Al-Kilani S, Allspach D, Alonzi L P, Anastasi A, Anisenkov A, Azfar F, Badgley K, Baeßler S, Bailey I, Baranov V A, Barlas-Yucel E, Barrett T, Barzi E, Basti A, Bedeschi F, Behnke A, Berz M, Bhattacharya M, Binney H P, Bjorkquist R, Bloom P, Bono J, Bottalico E, Bowcock T, Boyden D, Cantatore G, Carey R M, Carroll J, Casey B C K, Cauz D, Ceravolo S, Chakraborty R, Chang S P, Chapelain A, Chappa S, Charity S, Chislett R, Choi J, Chu Z, Chupp T E, Convery M E, Conway A, Corradi G, Corrodi S, Cotrozzi L, Crnkovic J D, Dabagov S, De Lurgio P M, Debevec P T, Di Falco S, Di Meo P, Di Sciascio G, Di Stefano R, Drendel B, Driutti A, Duginov V N, Eads M, Eggert N, Epps A, Esquivel J, Farooq M, Fatemi R, Ferrari C, Fertl M, Fiedler A, Fienberg A T, Fioretti A, Flay D, Foster S B, Friedsam H, z ž E, Froemming N S, Fry J, Fu C, Gabbanini C, Galati M D, Ganguly S, Garcia A, Gastler D E, George J, Gibbons L K, Gioiosa A, Giovanetti K L, Girotti P, Gohn W, Gorringe T, Grange J, Grant S, Gray F, Haciomeroglu S, Hahn D, Halewood-Leagas T, Hampai D, Han F, Hazen E, Hempstead J, Henry S, Herrod A T, Hertzog D W, Hesketh G, Hibbert A, Hodge Z, Holzbauer J L, Hong K W, Hong R, Iacovacci M, Incagli M, Johnstone C, Johnstone J A, Kammel P, Kargiantoulakis M, Karuza M, Kaspar J, Kawall D, Kelton L, Keshavarzi A, Kessler D, Khaw K S, Khechadoorian Z, Khomutov N V, Kiburg B, Kiburg M, Kim O, Kim S C, Kim Y I, King B, Kinnaird N, Korostelev M, Kourbanis I, Kraegeloh E, Krylov V A, Kuchibhotla A, Kuchinskiy N A, Labe K R, LaBounty J, Lancaster M, Lee M J, Lee S, Leo S, Li B, Li D, Li L, Logashenko I, Lorente Campos A, Lucà A, Lukicov G, Luo G, Lusiani A, Lyon A L, MacCoy B, Madrak R, Makino K, Marignetti F, Mastroianni S, Maxfield S, McEvoy M, Merritt W, Mikhailichenko A A, Miller J P, Miozzi S, Morgan J P, Morse W M, Mott J, Motuk E, Nath A, Newton D, Nguyen H, Oberling M, Osofsky R, Ostiguy J F, Park S, Pauletta G, Piacentino G M, Pilato R N, Pitts K T, Plaster B, c čani c ć D, Pohlman N, Polly C C, Popovic M, Price J, Quinn B, Raha N, Ramachandran S, Ramberg E, Rider N T, Ritchie J L, Roberts B L, Rubin D L, Santi L, Sathyan D, Schellman H, Schlesier C, Schreckenberger A, Semertzidis Y K, Shatunov Y M, Shemyakin D, Shenk M, Sim D, Smith M W, Smith A, Soha A K, Sorbara M, Stöckinger D, Stapleton J, Still D, Stoughton C, Stratakis D, Strohman C, Stuttard T, Swanson H E, Sweetmore G, Sweigart D A, Syphers M J, Tarazona D A, Teubner T, Tewsley-Booth A E, Thomson K, Tishchenko V, Tran N H, Turner W, Valetov E, Vasilkova D, Venanzoni G, Volnykh V P, Walton T, Warren M, Weisskopf A, Welty-Rieger L, Whitley M, Winter P, Wolski A, Wormald M, Wu W, Yoshikawa C 2021 Phys. Rev. Lett. 126 141801

    [14]

    Hillier A D, Blundell S J, McKenzie I, Umegaki I, Shu L, Wright J A, Prokscha T, Bert F, Shimomura K, Berlie A, Alberto H, Watanabe I 2022 Nat. Rev. Methods Primers 2 4

    [15]

    Tan C, Ding Z F, Zhang J, Zhu Z H, Bernal O O, Ho P C, Hillier A D, Koda A, Luetkens H, Morris G D, MacLaughlin D E, Shu L 2020 Phys. Rev. B 101 195108

    [16]

    Shu L, MacLaughlin D E, Varma C M, Bernal O O, Ho P C, Fukuda R H, Shen X P, Maple M B 2014 Phys. Rev. Lett. 113 166401

    [17]

    Gheidi S, Akintola K, Akella K S, Côté A M, Dunsiger S R, Broholm C, Fuhrman W T, Saha S R, Paglione J, Sonier J E 2019 Phys. Rev. Lett. 123 197203

    [18]

    Tan C, Ying T P, Ding Z F, Zhang J, MacLaughlin D E, Bernal O O, Ho P C, Huang K, Watanabe I, Li S Y, Shu L 2018 Phys. Rev. B 97 174524

    [19]

    Heffner R H, Sonier J E, MacLaughlin D E, Nieuwenhuys G J, Ehlers G, Mezei F, Cheong S W, Gardner J S, Röder H 2000 Phys. Rev. Lett. 85 3285

    [20]

    Li Y, Adroja D, Biswas P K, Baker P J, Zhang Q, Liu J, Tsirlin A A, Gegenwart P, Zhang Q 2016 Phys. Rev. Lett. 117 97201

    [21]

    Khasanov R, Evtushinsky D V, Amato A, Klauss H H, Luetkens H, Niedermayer Ch, Büchner B, Sun G L, Lin C T, Park J T, Inosov D S, Hinkov V 2009 Phys. Rev. Lett. 102 187005

    [22]

    Hillier A D, Quintanilla J, Mazidian B, Annett J F, Cywinski R 2012 Phys Rev Lett 109 97001

    [23]

    Shu L, Ni X J, Pan Z W 2021 Physics 50 239 (in Chinese) [殳蕾,倪晓杰,潘子文 2021 物理 50 257]

    [24]

    Chang W Y 1949 Rev. Mod. Phys. 21 166

    [25]

    Terada K, Ninomiya K, Osawa T, Tachibana S, Miyake Y, Kubo M K, Kawamura N, Higemoto W, Tsuchiyama A, Ebihara M, Uesugi M 2014 Sci. Rep. 4 5072

    [26]

    Terada K, Sato A, Ninomiya K, Kawashima Y, Shimomura K, Yoshida G, Kawai Y, Osawa T, Tachibana S 2017 Sci. Rep. 7 15478

    [27]

    Clemenza M, Bonesini M, Carpinelli M, Cremonesi O, Fiorini E, Gorini G, Hillier A, Ishida K, Menegolli A, Mocchiutti E, Oliva P, Prata M, Rendeli M, Rignanese L P, Rossella M, Sipala V, Soldani M, Tortora L, Vacchi A, Vallazza E 2019 J. Radioanal. Nucl. Chem. 322 1357

    [28]

    Hampshire B V, Butcher K, Ishida K, Green G, Paul D M, Hillier A D 2019 Heritage 2 400

    [29]

    Green G A, Ishida K, Hampshire B V, Butcher K, Pollard A M, Hillier A D 2021 J. Archaeol. Sci. 134 105470

    [30]

    Cataldo M, Clemenza M, Ishida K, Hillier A D 2022 Appl. Sci. 12 4237

    [31]

    Umegaki I, Higuchi Y, Kondo Y, Ninomiya K, Takeshita S, Tampo M, Nakano H, Oka H, Sugiyama J, Kubo M K, Miyake Y 2020 Anal. Chem. 92 8194

    [32]

    Breunlich W H, Kammel P, Cohen J S, Leon M 1989 Annu. Rev. Nucl. Part. Sci. 39 311

    [33]

    Morishima K, Kuno M, Nishio A, Kitagawa N, Manabe Y, Moto M, Takasaki F, Fujii H, Satoh K, Kodama H, Hayashi K, Odaka S, Procureur S, Attié D, Bouteille S, Calvet D, Filosa C, Magnier P, Mandjavidze I, Riallot M, Marini B, Gable P, Date Y, Sugiura M, Elshayeb Y, Elnady T, Ezzy M, Guerriero E, Steiger V, Serikoff N, Mouret J B, Charlès B, Helal H, Tayoubi M 2017 Nature 552 386

    [34]

    Shimomura K, Koda A, Pant A D, Sunagawa H, Fujimori H, Umegaki I, Nakamura J, Fujihala M, Tampo M, Kawamura N, Teshima N, Strasser P, Kadono R, Iwai R, Matoba S, Nishimura S, Kamioka S, Kanda S, Takeshita S, Yuasa T, Ito T, Yamazaki T, Mibe T, Higemoto W, Miyake Y, Kobayashi Y, Oishi Y, Nagatani Y, Ikedo Y 2024 Interactions 245 31

    [35]

    Daum M 1982 Nucl. Instrum. Methods Phys. Res. 192 137

    [36]

    Thomason J W G 2019 Nucl. Instrum. Methods Phys. Res. A 917 61

    [37]

    Cook S, D’Arcy R, Edmonds A, Fukuda M, Hatanaka K, Hino Y, Kuno Y, Lancaster M, Mori Y, Ogitsu T, Sakamoto H, Sato A, Tran N H, Truong N M, Wing M, Yamamoto A, Yoshida M 2017 Phys. Rev. Accel. Beams 20 30101

    [38]

    Beveridge J L, Doornbos J, Garner D M 1986 Hyperfine Interact. 32 907

    [39]

    Bao Y, Chen J, Chen C, Cheng H, Deng C, Fan R, Guo Y, He N, Hu H, Li Q, Li Y, Liang H, Liu L, Lv Y, Pan Z, Tan Z, Vassilopoulos N, Wu Y, Yang T, Zhang G 2023 J. Phys. Conf. Ser. 2462 12034

    [40]

    Kim J C, Jeong J Y, Pak K, Kim Y H, Park J, Lee J H, Kim Y K 2023 Nucl. Eng. Technol. 55 3692

    [41]

    Cai H J, He Y, Liu S, Jia H, Qin Y, Wang Z, Wang F, Zhao L, Pu N, Niu J, Chen L, Sun Z, Zhao H, Zhan W 2024 Phys. Rev. Accel. Beams 27 23403

    [42]

    Lv M, Wang J, Siang Khaw K 2023 arXiv:2307.01455 [physics.acc-ph]

    [43]

    Tang J Y, Zhou L P, Hong Y 2020 Physics 49 645 (in Chinese) [唐靖宇,周路平,洪杨 2020 物理 49 645]

    [44]

    Tang J Y, Fu S N, Jing H T, Tang H Q, Wei J, Xia H H 2010 Chinese Physics C 34 121

    [45]

    Chen H, Wang X L 2016 Nat. Mater. 15 689

    [46]

    Fu S N, Chen H S, Chen Y B, Ma L, Wang F W 2018 J. Phys. Conf. Ser. 1021 12002

    [47]

    Gao Z R, Yu H, Chen F J, Mayoral A, Niu Z, Niu Z, Li X, Deng H, Márquez-Álvarez C, He H, Xu S, Zhou Y, Xu J, Xu H, Fan W, Balestra S R G, Ma C, Hao J, Li J, Wu P, Yu J, Camblor M A 2024 Nature 628 99

    [48]

    Ren Q, Qi J, Yu D, Zhang Z, Song R, Song W, Yuan B, Wang T, Ren W, Zhang Z, Tong X, Li B 2022 Nat. Commun. 13 2293

    [49]

    Pan F, Ni K, Xu T, Chen H, Wang Y, Gong K, Liu C, Li X, Lin M L, Li S, Wang X, Yan W, Yin W, Tan P H, Sun L, Yu D, Ruoff R S, Zhu Y 2023 Nature 614 95

    [50]

    Liu L, Vassilopoulos N, Bao Y, Zhang G, Chen C, Tan Z, He N 2023 J. Phys. Conf. Ser. 2462 012020

    [51]

    Liu L, Yu Q, Wang Z, Ell J, Huang M X, Ritchie R O 2020 Science 368 1347

    [52]

    L Michel 1950 Proc. Phys. Soc. A 63 514

    [53]

    Amato A, Morenzoni E 2024 Introduction to Muon Spin Spectroscopy 1 版 (Cham: Springer Cham) pp66–131

    [54]

    Staub U, Roessli B, Amato A 2000 Physica B Condens. Matter 289–290 299

    [55]

    Luetkens H, Klauss H H, Kraken M, Litterst F J, Dellmann T, Klingeler R, Hess C, Khasanov R, Amato A, Baines C, Kosmala M, Schumann O J, Braden M, Hamann-Borrero J, Leps N, Kondrat A, Behr G, Werner J, Büchner B 2009 Nat. Mater. 8 305

    [56]

    de Visser A, Huy N T, Gasparini A, de Nijs D E, Andreica D, Baines C, Amato A 2009 Phys. Rev. Lett. 102 167003

    [57]

    Hillier A D, Quintanilla J, Cywinski R 2009 Phys. Rev. Lett. 102 117007

    [58]

    Sonier J E, Brewer J H, Kiefl R F 2000 Rev. Mod. Phys. 72 769

    [59]

    Yokoyama K, Lord J S, Mengyan P W, Goeks M R, Lichti R L 2019 Appl. Phys. Lett. 115 112101

    [60]

    Li Q, Pan Z, Bao Y, Yang T, Cheng H, Li Y, Hu H, Liang H, Ye B 2023 J. Phys. Conf. Ser. 2462 012022

    [61]

    Fermi E, Teller E 1947 Phys. Rev. 72 399

    [62]

    Mukhopadhyay N C 1977 Phys. Rep. 30 1

    [63]

    Borie E, Rinker G A 1982 Rev. Mod. Phys. 54 67

    [64]

    Nakamura T, Matsumoto M, Amano K, Enokido Y, Zolensky M E, Mikouchi T, Genda H, Tanaka S, Zolotov M Y, Kurosawa K, Wakita S, Hyodo R, Nagano H, Nakashima D, Takahashi Y, Fujioka Y, Kikuiri M, Kagawa E, Matsuoka M, Brearley A J, Tsuchiyama A, Uesugi M, Matsuno J, Kimura Y, Sato M, Milliken R E, Tatsumi E, Sugita S, Hiroi T, Kitazato K, Brownlee D, Joswiak D J, Takahashi M, Ninomiya K, Takahashi T, Osawa T, Terada K, Brenker F E, Tkalcec B J, Vincze L, Brunetto R, Aléon-Toppani A, Chan Q H S, Roskosz M, Viennet J C, Beck P, Alp E E, Michikami T, Nagaashi Y, Tsuji T, Ino Y, Martinez J, Han J, Dolocan A, Bodnar R J, Tanaka M, Yoshida H, Sugiyama K, King A J, Fukushi K, Suga H, Yamashita S, Kawai T, Inoue K, Nakato A, Noguchi T, Vilas F, Hendrix A R, Jaramillo-Correa C, Domingue D L, Dominguez G, Gainsforth Z, Engrand C, Duprat J, Russell S S, Bonato E, Ma C, Kawamoto T, Wada T, Watanabe S, Endo R, Enju S, Riu L, Rubino S, Tack P, Takeshita S, Takeichi Y, Takeuchi A, Takigawa A, Takir D, Tanigaki T, Taniguchi A, Tsukamoto K, Yagi T, Yamada S, Yamamoto K, Yamashita Y, Yasutake M, Uesugi K, Umegaki I, Chiu I, Ishizaki T, Okumura S, Palomba E, Pilorget C, Potin S M, Alasli A, Anada S, Araki Y, Sakatani N, Schultz C, Sekizawa O, Sitzman S D, Sugiura K, Sun M, Dartois E, Pauw E De, Dionnet Z, Djouadi Z, Falkenberg G, Fujita R, Fukuma T, Gearba I R, Hagiya K, Hu M Y, Kato T, Kawamura T, Kimura M, Kubo M K, Langenhorst F, Lantz C, Lavina B, Lindner M, Zhao J, Vekemans B, Baklouti D, Bazi B, Borondics F, Nagasawa S, Nishiyama G, Nitta K, Mathurin J, Matsumoto T, Mitsukawa I, Miura H, Miyake A, Miyake Y, Yurimoto H, Okazaki R, Yabuta H, Naraoka H, Sakamoto K, Tachibana S, Connolly H C, Lauretta D S, Yoshitake M, Yoshikawa M, Yoshikawa K, Yoshihara K, Yokota Y, Yogata K, Yano H, Yamamoto Y, Yamamoto D, Yamada M, Yamada T, Yada T, Wada K, Usui T, Tsukizaki R, Terui F, Takeuchi H, Takei Y, Iwamae A, Soejima H, Shirai K, Shimaki Y, Senshu H, Sawada H, Saiki T, Ozaki M, Ono G, Okada T, Ogawa N, Ogawa K, Noguchi R, Noda H, Nishimura M, Namiki N, Nakazawa S, Morota T, Miyazaki A, Miura A, Mimasu Y, Matsumoto K, Kumagai K, Kouyama T, Kikuchi S, Kawahara K, Kameda S, Iwata T, Ishihara Y, Ishiguro M, Ikeda H, Hosoda S, Honda R, Honda C, Hitomi Y, Hirata N, Hirata N, Hayashi T, Hayakawa M, Hatakeda K, Furuya S, Fukai R, Fujii A, Cho Y, Arakawa M, Abe M, Watanabe S, Tsuda Y 2023 Science 379 eabn8671

    [65]

    Shimada-Takaura K, Ninomiya K, Sato A, Ueda N, Tampo M, Takeshita S, Umegaki I, Miyake Y, Takahashi K 2021 J. Nat. Med. 75 532

    [66]

    Brown K L, Stockdale C P J, Luo H, Zhao X, Li J F, Viehland D, Xu G, Gehring P M, Ishida K, Hillier A D, Stock C 2018 J. Phys.: Condens. Matter 30 125703

    [67]

    Ninomiya K, Kajino M, Nambu A, Inagaki M, Kudo T, Sato A, Terada K, Shinohara A, Tomono D, Kawashima Y, Sakai Y, Takayama T 2022 Bull. Chem. Soc. Jpn. 95 1769

    [68]

    Aramini M, Milanese C, Hillier A D, Girella A, Horstmann C, Klassen T, Ishida K, Dornheim M, Pistidda C 2020 Nanomaterials 10 1260

    [69]

    Rossini R, Di Martino D, Agoro T, Cataldo M, Gorini G, Hillier A D, Laubenstein M, Marcucci G, Musa M, Riccardi M P, Scherillo A, Clemenza M 2023 J. Anal. At. Spectrom. 38 293

    [70]

    Ninomiya K, Nagatomo T, Kubo K M, Strasser P, Kawamura N, Shimomura K, Miyake Y, Saito T, Higemoto W 2010 J. Phys. Conf. Ser. 225 12040

    [71]

    Hillier A D, Paul D McK, Ishida K 2016 Microchem. J. 125 203

    [72]

    Mizuno R, Niikura M, Saito T Y, Matsuzaki T, Sakurai H, Amato A, Asari S, Biswas S, Chiu I, Gerchow L, Guguchia Z, Janka G, Ninomiya K, Ritjoho N, Sato A, von Schoeler K, Tomono D, Terada K, Wang C 2024 Nucl. Instrum. Methods Phys. Res. A 1060 169029

    [73]

    Terada K, Ninomiya K, Sato A, Tomono D, Kawashima Y, Inagaki M, Nambu A, Kudo T, Osawa T, Kubo M K 2024 J. Anal. Sci. Technol. 15 28

    [74]

    Osawa T, Nagasawa S, Ninomiya K, Takahashi T, Nakamura T, Wada T, Taniguchi A, Umegaki I, Kubo K M, Terada K, Chiu I H, Takeda S, Katsuragawa M, Minami T, Watanabe S, Azuma T, Mizumoto K, Yoshida G, Takeshita S, Tampo M, Shimomura K, Miyake Y 2023 ACS Earth Space Chem. 7 699

    [75]

    Gerchow L, Biswas S, Janka G, Vigo C, Knecht A, Vogiatzi S M, Ritjoho N, Prokscha T, Luetkens H, Amato A 2023 Rev. Sci. Instrum. 94 045106

    [76]

    Sugiyama J, Umegaki I, Nozaki H, Higemoto W, Hamada K, Takeshita S, Koda A, Shimomura K, Ninomiya K, Kubo M K 2018 Phys. Rev. Lett. 121 87202

    [77]

    Kato T, Tampo M, Takeshita S, Tanaka H, Matsuyama H, Hashimoto M, Miyake Y 2021 IEEE Trans. Nucl. Sci. 68 1436

    [78]

    Ninomiya K, Kubo M K, Inagaki M, Yoshida G, Takeshita S, Tampo M, Shimomura K, Kawamura N, Strasser P, Miyake Y, Ito T U, Higemoto W, Saito T 2024 J. Radioanal. Nucl. Chem. 333 3445

  • [1] 曹嵩, 殷雯, 周斌, 胡志良, 沈飞, 易天成, 王松林, 梁天骄. 中国散裂中子源二期靶站关键部件辐照损伤模拟计算. 物理学报, doi: 10.7498/aps.73.20240088
    [2] 王颖, 殳蕾. μSR实验进展与缪子源发展趋势. 物理学报, doi: 10.7498/aps.73.20240940
    [3] 李雨芃, 汤秀章, 陈欣南, 高春宇, 陈雁南, 范澄军, 吕建友. 基于缪子离散能量的材料鉴别实验研究. 物理学报, doi: 10.7498/aps.72.20221645
    [4] 苏宁, 刘圆圆, 王力, 程建平. 秦始皇陵地宫宇宙射线缪子吸收成像模拟研究. 物理学报, doi: 10.7498/aps.71.20211582
    [5] 霍勇刚, 严江余, 张全虎. 缪子多模态成像图像质量分析. 物理学报, doi: 10.7498/aps.71.20211083
    [6] 王德鑫, 张苏雅拉吐, 蒋伟, 任杰, 王金成, 唐靖宇, 阮锡超, 王宏伟, 陈志强, 黄美容, 唐鑫, 胡新荣, 李鑫祥, 刘龙祥, 刘丙岩, 孙慧, 张岳, 郝子锐, 宋娜, 李雪, 牛丹丹, 利国, 蒙古夫. 不同厚度镥样品中子俘获反应实验研究. 物理学报, doi: 10.7498/aps.71.20212051
    [7] 张江林, 姜炳, 陈永浩, 郭子安, 王小鹤, 蒋伟, 易晗, 韩建龙, 胡继峰, 唐靖宇, 陈金根, 蔡翔舟. 基于中国散裂中子源反角白光中子束线的天然锂中子全截面测量. 物理学报, doi: 10.7498/aps.71.20211646
    [8] 严江余, 张全虎, 霍勇刚. 基于散射和次级诱发中子的缪子多模态成像. 物理学报, doi: 10.7498/aps.70.20210804
    [9] 霍勇刚, 严江余, 张全虎. 缪子多模态成像图像质量分析. 物理学报, doi: 10.7498/aps.70.20211083
    [10] 张奇玮, 栾广源, 任杰, 阮锡超, 贺国珠, 鲍杰, 孙琪, 黄翰雄, 王朝辉, 顾旻皓, 余滔, 解立坤, 陈永浩, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 韩长材, 韩子杰, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 蒋伟, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 羊奕伟, 易晗, 于莉, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏, 朱兴华. 基于CSNS反角白光中子源的中子俘获反应截面测量技术研究. 物理学报, doi: 10.7498/aps.70.20210742
    [11] 任杰, 阮锡超, 陈永浩, 蒋伟, 鲍杰, 栾广源, 张奇玮, 黄翰雄, 王朝辉, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 顾旻皓, 韩长材, 韩子杰, 贺国珠, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 易晗, 于莉, 余滔, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子源束内伽马射线研究. 物理学报, doi: 10.7498/aps.69.20200718
    [12] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 基于中国散裂中子源的商用静态随机存取存储器中子单粒子效应实验研究. 物理学报, doi: 10.7498/aps.69.20200265
    [13] 鲍杰, 陈永浩, 张显鹏, 栾广源, 任杰, 王琦, 阮锡超, 张凯, 安琪, 白怀勇, 曹平, 陈琪萍, 程品晶, 崔增琪, 樊瑞睿, 封常青, 顾旻皓, 郭凤琴, 韩长材, 韩子杰, 贺国珠, 何泳成, 何越峰, 黄翰雄, 黄蔚玲, 黄锡汝, 季筱路, 吉旭阳, 江浩雨, 蒋伟, 敬罕涛, 康玲, 康明涛, 兰长林, 李波, 李论, 李强, 李晓, 李阳, 李样, 刘荣, 刘树彬, 刘星言, 马应林, 宁常军, 聂阳波, 齐斌斌, 宋朝晖, 孙虹, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 王鹏程, 王涛峰, 王艳凤, 王朝辉, 王征, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 杨毅, 易晗, 于莉, 余滔, 于永积, 张国辉, 张旌, 张林浩, 张利英, 张清民, 张奇伟, 张玉亮, 张志永, 赵映潭, 周良, 周祖英, 朱丹阳, 朱科军, 朱鹏. 更正:中国散裂中子源反角白光中子束流参数的初步测量. 物理学报, doi: 10.7498/aps.68.109901
    [14] 詹霞, JoeKelleher, 高建波, 马艳玲, 初铭强, 张书彦, 张鹏, SanjooramPaddea, 贡志锋, 侯晓东. 英国散裂中子源工程材料原位加载衍射实验高温样品环境优化设计. 物理学报, doi: 10.7498/aps.68.20182295
    [15] 胡志良, 杨卫涛, 李永宏, 李洋, 贺朝会, 王松林, 周斌, 于全芝, 何欢, 谢飞, 白雨蓉, 梁天骄. 应用中国散裂中子源9号束线端研究65 nm微控制器大气中子单粒子效应. 物理学报, doi: 10.7498/aps.68.20191196
    [16] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 中国散裂中子源在大气中子单粒子效应研究中的应用评估. 物理学报, doi: 10.7498/aps.68.20181843
    [17] 鲍杰, 陈永浩, 张显鹏, 栾广源, 任杰, 王琦, 阮锡超, 张凯, 安琪, 白怀勇, 曹平, 陈琪萍, 程品晶, 崔增琪, 樊瑞睿, 封常青, 顾旻皓, 郭凤琴, 韩长材, 韩子杰, 贺国珠, 何泳成, 何越峰, 黄翰雄, 黄蔚玲, 黄锡汝, 季筱路, 吉旭阳, 江浩雨, 蒋伟, 敬罕涛, 康玲, 康明涛, 兰长林, 李波, 李论, 李强, 李晓, 李阳, 李样, 刘荣, 刘树彬, 刘星言, 马应林, 宁常军, 聂阳波, 齐斌斌, 宋朝晖, 孙虹, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 王鹏程, 王涛峰, 王艳凤, 王朝辉, 王征, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 杨毅, 易晗, 于莉, 余滔, 于永积, 张国辉, 张旌, 张林浩, 张利英, 张清民, 张奇伟, 张玉亮, 张志永, 赵映潭, 周良, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子束流参数的初步测量. 物理学报, doi: 10.7498/aps.68.20182191
    [18] 温志文, 祁辉荣, 张余炼, 王海云, 刘凌, 王艳凤, 张建, 李玉红, 孙志嘉. 用于中国散裂中子源多功能反射谱仪的高气压多丝正比室探测器的研制. 物理学报, doi: 10.7498/aps.67.20172618
    [19] 沈飞, 梁泰然, 殷雯, 于全芝, 左太森, 姚泽恩, 朱涛, 梁天骄. 中国散裂中子源多功能反射谱仪屏蔽设计. 物理学报, doi: 10.7498/aps.63.152801
    [20] 于全芝, 殷雯, 梁天骄. 中国散裂中子源靶站重要部件的辐照损伤计算与分析. 物理学报, doi: 10.7498/aps.60.052501
计量
  • 文章访问数:  105
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-07

/

返回文章
返回