-
英国散裂中子源(ISIS)在工程材料中子衍射领域有着十余年丰富的研究经验, 最为典型的衍射谱仪之一的Engin-X在材料、加工等方向有着广泛应用, 包括残余应力分布测量、金属相变分析、微观力学研究等. Engin-X通过设置红外加热型高温炉配套材料试验机的样品环境以实现中子衍射原位高温力学实验, 目前原位实验中高温炉最高设计温度可达1100 ℃. 通过优化高温炉反射罩形状、布局、反射涂层, 以及合理设置反射挡板等措施(例如采用一种椭圆-圆组合形状的反射罩), 可实现更优的光线聚焦效果. 模拟计算得知样品的能量吸收可提高109%以上, 最终高温可达1400 ℃. 相关研究有望拓展Engin-X中子衍射技术在材料研究领域的应用, 同时也为中国散裂中子源(CSNS)工程材料衍射谱仪样品环境设计提供借鉴经验.The ISIS Neutron Facility of Rutherford Appleton Laboratory (RAL) in the UK plays an important and world leading role in in-situ engineering materials testing, one of the most typical neutron diffractometers known as Engin-X, used to measure residual stress and phase transformation and to do micromechanics research, through using different sample environment equipment, such as mechanical fatigue loading frame, cryogenic temperature furnace of cooling the sample down to 1.5 K and particularly high temperature furnace of heating the sample up to 1100 ℃ under loading condition. The present maximum heating capability of the Engin-X high temperature furnace at ISIS can be increased to above 1100 ℃, that would allow more extremely challenging high temperature engineering problems around the world to be investigated. With this ambition in mind, in this paper we use TracePro software initially to optimize the geometry of the present Engin-X furnace reflectors and their configurations’ arrangement. One is to use ellipse-sphere combination and the other is to use ellipse-sphere-ellipse combination to replace the present Engin-X high temperature furnace’s half ellipse reflector geometry. The results show that the former plus further reflector surface coating and reasonable side shielding arrangement result in a total increase of 109% of energy absorption by the sample. The latter makes a further 6% of increase of energy absorption by the sample. Such results are further checked by subsequent ANSYS thermal analysis to investigate the temperature distributions within the centre portion of the sample. The ANSYS simulation results further reveal that both the ellipse-sphere and ellipse-sphere-ellipse configurations are able to increase the maximum capability of the Engin-X high temperature furnace at ISIS from the present 1100 ℃ to 1399 ℃ and 1423 ℃, respectively. In this paper, we present the details of the simulations and all the configurations of the Engin-X high temperature furnace.
-
Keywords:
- ISIS /
- in-situ experiment /
- sample environment /
- high temperature furnace
[1] Makowska M G, Kuhn L T, Cleemann L N, Lauridsen E M, Bilheux H Z, Molaison J J, Santodonato L J, Tremsin A S, Grosse M, Morgano M, Kabra S, Strobl M 2015 Rev. Sci. Instrum. 86 125109Google Scholar
[2] Danilewsky A, Wittge J, Hess A, Croll A, Allen D, Mcnally P, Vagovic P, Cecilia A, Li Z, Baumbach T, Gorostegui-Colinas E, Elizalde M R 2010 Nucl. Instrum. Methods B 268 399Google Scholar
[3] Lee E H, Hwang J S, Lee C W, Yang D Y, Yang W H 2014 J. Mater. Process. Technol. 214 784Google Scholar
[4] Eyer A, Nitsche R, Zimmermann H 1979 J. Cryst. Growth 47 219Google Scholar
[5] Lorenz G, Neder R B, Marxreiter J, Frey F, Schneider J 1993 J. Appl. Cryst. 26 632Google Scholar
[6] Sarin P, Yoon W, Jurkschat K, Zschack P, Kriven W M 2006 Rev. Sci. Instrum. 77 093906Google Scholar
[7] Haboub A, Bale H A, Nasiatka J R, Cox B N, Marshall D B, Ritchie R O, MacDowell A A 2014 Rev. Sci. Instrum. 85 083702Google Scholar
[8] 英国散裂中子源官网 https://www.isis.stfc.ac.uk/Pages/ ENGINX-Furnace.aspx [2018-12-29]
[9] Haynes R, Paradowska A M, Chowdhury M A H, Goodway C M, Done R, Kirichek O, Oliver E C 2012 Meas. Sci. Technol. 23 047002Google Scholar
[10] Paradowska A M, Baczmansk A, Zhang S Y, Rao A, Bouchard P J, Kelleher J 2011 161st Iron and Steel Institute of Japan Meeting Tokyo, Japan, March 25-27, 2011, p539
[11] Bourke M A M, Dunand D C, Ustundag E 2002 Appl. Phys. A 74 S1707Google Scholar
[12] 洛斯阿拉莫斯国家实验室官网 https://lansce.lanl.gov/ facilities/lujan/instruments/smarts/index.php[2018–12–29]
[13] 日本散裂中子源官网 https://j-parc.jp/researcher/MatLife/en/ se/bl19.html[2018–12–29]
[14] Harjo S, Ito T, Aizawa K, Arima H, Abe J, Moriai A, Iwahashi T, Kamiyama T 2011 Mater. Sci. Forum 681 443Google Scholar
[15] Santisteban J R, Daymond M R, James J A, Edwards L 2006 J. Appl. Crystallogr. 39 812Google Scholar
[16] PRECISION CONTROL SYSTEMS公司官网http://www.pcscontrols.com/[2018–12–29]
[17] Kang W M 2015 CN201510009283
[18] Optical Properties of Metals, Hass G https://web.mit.edu/8.13/8.13c/references-fall/aip/aip-handbook-section6g.pdf [2019-3-20]
[19] Sadao A 2012 The Handbook on Optical Constants of Metals (Vol. 1) (Singapore: World Scientific Publishing Co. Pte. Ltd.) p68
[20] 张福波, 边军, 杜林秀, 王国栋, 刘相华 2006 金属热处理 31 89Google Scholar
Zhang F B, Bian J, Du L X, Wang G D, Liu X H 2006 Heat Treat. Met. 31 89Google Scholar
-
表 1 TracePro模拟中高温炉各部件参数设定
Table 1. Parameters of furnace components in TracePro simulation.
卤素灯管 反射罩 螺纹棒状试样 材料试验机加载轴 材料 钨 长度/mm 102 中间段长度/mm 42 单侧长度/mm 150 加热段长度/mm 75 材料 铝, 内层镀金 中间段直径/mm 8 直径/mm 32 加热功率/W 2000 材料 因科镍718 材料 因科镍718 -
[1] Makowska M G, Kuhn L T, Cleemann L N, Lauridsen E M, Bilheux H Z, Molaison J J, Santodonato L J, Tremsin A S, Grosse M, Morgano M, Kabra S, Strobl M 2015 Rev. Sci. Instrum. 86 125109Google Scholar
[2] Danilewsky A, Wittge J, Hess A, Croll A, Allen D, Mcnally P, Vagovic P, Cecilia A, Li Z, Baumbach T, Gorostegui-Colinas E, Elizalde M R 2010 Nucl. Instrum. Methods B 268 399Google Scholar
[3] Lee E H, Hwang J S, Lee C W, Yang D Y, Yang W H 2014 J. Mater. Process. Technol. 214 784Google Scholar
[4] Eyer A, Nitsche R, Zimmermann H 1979 J. Cryst. Growth 47 219Google Scholar
[5] Lorenz G, Neder R B, Marxreiter J, Frey F, Schneider J 1993 J. Appl. Cryst. 26 632Google Scholar
[6] Sarin P, Yoon W, Jurkschat K, Zschack P, Kriven W M 2006 Rev. Sci. Instrum. 77 093906Google Scholar
[7] Haboub A, Bale H A, Nasiatka J R, Cox B N, Marshall D B, Ritchie R O, MacDowell A A 2014 Rev. Sci. Instrum. 85 083702Google Scholar
[8] 英国散裂中子源官网 https://www.isis.stfc.ac.uk/Pages/ ENGINX-Furnace.aspx [2018-12-29]
[9] Haynes R, Paradowska A M, Chowdhury M A H, Goodway C M, Done R, Kirichek O, Oliver E C 2012 Meas. Sci. Technol. 23 047002Google Scholar
[10] Paradowska A M, Baczmansk A, Zhang S Y, Rao A, Bouchard P J, Kelleher J 2011 161st Iron and Steel Institute of Japan Meeting Tokyo, Japan, March 25-27, 2011, p539
[11] Bourke M A M, Dunand D C, Ustundag E 2002 Appl. Phys. A 74 S1707Google Scholar
[12] 洛斯阿拉莫斯国家实验室官网 https://lansce.lanl.gov/ facilities/lujan/instruments/smarts/index.php[2018–12–29]
[13] 日本散裂中子源官网 https://j-parc.jp/researcher/MatLife/en/ se/bl19.html[2018–12–29]
[14] Harjo S, Ito T, Aizawa K, Arima H, Abe J, Moriai A, Iwahashi T, Kamiyama T 2011 Mater. Sci. Forum 681 443Google Scholar
[15] Santisteban J R, Daymond M R, James J A, Edwards L 2006 J. Appl. Crystallogr. 39 812Google Scholar
[16] PRECISION CONTROL SYSTEMS公司官网http://www.pcscontrols.com/[2018–12–29]
[17] Kang W M 2015 CN201510009283
[18] Optical Properties of Metals, Hass G https://web.mit.edu/8.13/8.13c/references-fall/aip/aip-handbook-section6g.pdf [2019-3-20]
[19] Sadao A 2012 The Handbook on Optical Constants of Metals (Vol. 1) (Singapore: World Scientific Publishing Co. Pte. Ltd.) p68
[20] 张福波, 边军, 杜林秀, 王国栋, 刘相华 2006 金属热处理 31 89Google Scholar
Zhang F B, Bian J, Du L X, Wang G D, Liu X H 2006 Heat Treat. Met. 31 89Google Scholar
计量
- 文章访问数: 10053
- PDF下载量: 79
- 被引次数: 0