搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

英国散裂中子源工程材料原位加载衍射实验高温样品环境优化设计

詹霞 JoeKelleher 高建波 马艳玲 初铭强 张书彦 张鹏 SanjooramPaddea 贡志锋 侯晓东

引用本文:
Citation:

英国散裂中子源工程材料原位加载衍射实验高温样品环境优化设计

詹霞, JoeKelleher, 高建波, 马艳玲, 初铭强, 张书彦, 张鹏, SanjooramPaddea, 贡志锋, 侯晓东

High temperature sample environment upgrade of ISIS engineering materials in-situ diffraction experiment

Zhan Xia, Joe Kelleher, Gao Jian-Bo, Ma Yan-Ling, Chu Ming-Qiang, Zhang Shu-Yan, Zhang Peng, Sanjooram Paddea, Gong Zhi-Feng, Hou Xiao-Dong
PDF
HTML
导出引用
  • 英国散裂中子源(ISIS)在工程材料中子衍射领域有着十余年丰富的研究经验, 最为典型的衍射谱仪之一的Engin-X在材料、加工等方向有着广泛应用, 包括残余应力分布测量、金属相变分析、微观力学研究等. Engin-X通过设置红外加热型高温炉配套材料试验机的样品环境以实现中子衍射原位高温力学实验, 目前原位实验中高温炉最高设计温度可达1100 ℃. 通过优化高温炉反射罩形状、布局、反射涂层, 以及合理设置反射挡板等措施(例如采用一种椭圆-圆组合形状的反射罩), 可实现更优的光线聚焦效果. 模拟计算得知样品的能量吸收可提高109%以上, 最终高温可达1400 ℃. 相关研究有望拓展Engin-X中子衍射技术在材料研究领域的应用, 同时也为中国散裂中子源(CSNS)工程材料衍射谱仪样品环境设计提供借鉴经验.
    The ISIS Neutron Facility of Rutherford Appleton Laboratory (RAL) in the UK plays an important and world leading role in in-situ engineering materials testing, one of the most typical neutron diffractometers known as Engin-X, used to measure residual stress and phase transformation and to do micromechanics research, through using different sample environment equipment, such as mechanical fatigue loading frame, cryogenic temperature furnace of cooling the sample down to 1.5 K and particularly high temperature furnace of heating the sample up to 1100 ℃ under loading condition. The present maximum heating capability of the Engin-X high temperature furnace at ISIS can be increased to above 1100 ℃, that would allow more extremely challenging high temperature engineering problems around the world to be investigated. With this ambition in mind, in this paper we use TracePro software initially to optimize the geometry of the present Engin-X furnace reflectors and their configurations’ arrangement. One is to use ellipse-sphere combination and the other is to use ellipse-sphere-ellipse combination to replace the present Engin-X high temperature furnace’s half ellipse reflector geometry. The results show that the former plus further reflector surface coating and reasonable side shielding arrangement result in a total increase of 109% of energy absorption by the sample. The latter makes a further 6% of increase of energy absorption by the sample. Such results are further checked by subsequent ANSYS thermal analysis to investigate the temperature distributions within the centre portion of the sample. The ANSYS simulation results further reveal that both the ellipse-sphere and ellipse-sphere-ellipse configurations are able to increase the maximum capability of the Engin-X high temperature furnace at ISIS from the present 1100 ℃ to 1399 ℃ and 1423 ℃, respectively. In this paper, we present the details of the simulations and all the configurations of the Engin-X high temperature furnace.
      通信作者: 詹霞, xia.zhan@ceamat.com
    • 基金项目: 广东省引进创新创业团队项目(批准号: 2016ZT06G025)资助的课题.
      Corresponding author: Zhan Xia, xia.zhan@ceamat.com
    • Funds: Project supported by the Introducing Innovative and Entrepreneurial Research Team Program of Guangdong Province, China (Grant No. 2016ZT06G025).
    [1]

    Makowska M G, Kuhn L T, Cleemann L N, Lauridsen E M, Bilheux H Z, Molaison J J, Santodonato L J, Tremsin A S, Grosse M, Morgano M, Kabra S, Strobl M 2015 Rev. Sci. Instrum. 86 125109Google Scholar

    [2]

    Danilewsky A, Wittge J, Hess A, Croll A, Allen D, Mcnally P, Vagovic P, Cecilia A, Li Z, Baumbach T, Gorostegui-Colinas E, Elizalde M R 2010 Nucl. Instrum. Methods B 268 399Google Scholar

    [3]

    Lee E H, Hwang J S, Lee C W, Yang D Y, Yang W H 2014 J. Mater. Process. Technol. 214 784Google Scholar

    [4]

    Eyer A, Nitsche R, Zimmermann H 1979 J. Cryst. Growth 47 219Google Scholar

    [5]

    Lorenz G, Neder R B, Marxreiter J, Frey F, Schneider J 1993 J. Appl. Cryst. 26 632Google Scholar

    [6]

    Sarin P, Yoon W, Jurkschat K, Zschack P, Kriven W M 2006 Rev. Sci. Instrum. 77 093906Google Scholar

    [7]

    Haboub A, Bale H A, Nasiatka J R, Cox B N, Marshall D B, Ritchie R O, MacDowell A A 2014 Rev. Sci. Instrum. 85 083702Google Scholar

    [8]

    英国散裂中子源官网 https://www.isis.stfc.ac.uk/Pages/ ENGINX-Furnace.aspx [2018-12-29]

    [9]

    Haynes R, Paradowska A M, Chowdhury M A H, Goodway C M, Done R, Kirichek O, Oliver E C 2012 Meas. Sci. Technol. 23 047002Google Scholar

    [10]

    Paradowska A M, Baczmansk A, Zhang S Y, Rao A, Bouchard P J, Kelleher J 2011 161st Iron and Steel Institute of Japan Meeting Tokyo, Japan, March 25-27, 2011, p539

    [11]

    Bourke M A M, Dunand D C, Ustundag E 2002 Appl. Phys. A 74 S1707Google Scholar

    [12]

    洛斯阿拉莫斯国家实验室官网 https://lansce.lanl.gov/ facilities/lujan/instruments/smarts/index.php[2018–12–29]

    [13]

    日本散裂中子源官网 https://j-parc.jp/researcher/MatLife/en/ se/bl19.html[2018–12–29]

    [14]

    Harjo S, Ito T, Aizawa K, Arima H, Abe J, Moriai A, Iwahashi T, Kamiyama T 2011 Mater. Sci. Forum 681 443Google Scholar

    [15]

    Santisteban J R, Daymond M R, James J A, Edwards L 2006 J. Appl. Crystallogr. 39 812Google Scholar

    [16]

    PRECISION CONTROL SYSTEMS公司官网http://www.pcscontrols.com/[2018–12–29]

    [17]

    Kang W M 2015 CN201510009283

    [18]

    Optical Properties of Metals, Hass G https://web.mit.edu/8.13/8.13c/references-fall/aip/aip-handbook-section6g.pdf [2019-3-20]

    [19]

    Sadao A 2012 The Handbook on Optical Constants of Metals (Vol. 1) (Singapore: World Scientific Publishing Co. Pte. Ltd.) p68

    [20]

    张福波, 边军, 杜林秀, 王国栋, 刘相华 2006 金属热处理 31 89Google Scholar

    Zhang F B, Bian J, Du L X, Wang G D, Liu X H 2006 Heat Treat. Met. 31 89Google Scholar

  • 图 1  (a) Engin-X高温炉加热单元实物图; (b) Engin-X高温炉加热单元简化图

    Fig. 1.  (a) Engin-X furnace heating unit current layout; (b) Engin-X furnace heating unit simplified schematic drawing.

    图 2  Engin-X高温原位实验设备布置示意图

    Fig. 2.  Engin-X setup for in-situ high temperature experiments.

    图 3  (a)椭圆–圆组合反射罩几何关系图; (b)椭圆–圆–椭圆组合反射罩几何关系图

    Fig. 3.  (a) Combined ellipse-sphere reflector geometrical layout; (b) combined ellipse-sphere-ellipse reflector geometrical layout.

    图 4  椭圆–圆组合反射罩下样品能量吸收模拟结果

    Fig. 4.  Sample energy absorption mounted by combined ellipse-sphere reflector.

    图 5  (a)椭圆–圆组合反射罩下样品能量吸收对比; (b)椭圆–圆组合反射罩和椭圆–圆–椭圆组合反射罩下样品最优能量吸收对比

    Fig. 5.  (a) Sample energy absorption comparison under combined ellipse-sphere reflector; (b) sample energy absorption comparison between optimized ellipse-sphere and optimized ellipse-sphere-ellipse reflector.

    图 6  热模拟中棒状试样在(a)椭圆–圆组合反射罩下和(b)椭圆–圆–椭圆组合反射罩下中轴线的温度分布

    Fig. 6.  Simulated central axial temperature distribution of screw-threaded sample under (a) ellipse-sphere reflector and (b) ellipse-sphere-ellipse reflector.

    图 7  热模拟中棒状试样中心处4 mm × 4 mm × 4 mm体积元在(a)椭圆–圆组合反射罩下和(b)椭圆–圆–椭圆组合反射罩下轴向横截面温度分布

    Fig. 7.  4 mm × 4 mm × 4 mm gauge volume simulated axial cross-section temperature distribution of screw-threaded sample under (a) ellipse-sphere reflector and (b) ellipse-sphere-ellipse reflector.

    图 8  棒状试样中心处4 mm × 4 mm × 4 mm体积元在(a)椭圆–圆组合反射罩下和(b)椭圆–圆–椭圆组合反射罩下径向横截面温度分布

    Fig. 8.  4 mm × 4 mm × 4 mm gauge volume simulated radial cross-section temperature distribution of screw-threaded sample under (a) ellipse-sphere reflector and (b) ellipse-sphere-ellipse reflector.

    图 9  高温拉伸实验试样加热阶段实物图

    Fig. 9.  Sample heating process in high temperature tensile test

    图 10  热模拟中棒状试样在(a) 70%加热功率和(b) 100%加热功率下的温度分布

    Fig. 10.  Simulated temperature distribution of screw-threaded sample under (a) 70% heating power and (b) 100% heating power.

    表 1  TracePro模拟中高温炉各部件参数设定

    Table 1.  Parameters of furnace components in TracePro simulation.

    卤素灯管 反射罩 螺纹棒状试样 材料试验机加载轴
    材料 长度/mm 102 中间段长度/mm 42 单侧长度/mm 150
    加热段长度/mm 75 材料 铝, 内层镀金 中间段直径/mm 8 直径/mm 32
    加热功率/W 2000 材料 因科镍718 材料 因科镍718
    下载: 导出CSV
  • [1]

    Makowska M G, Kuhn L T, Cleemann L N, Lauridsen E M, Bilheux H Z, Molaison J J, Santodonato L J, Tremsin A S, Grosse M, Morgano M, Kabra S, Strobl M 2015 Rev. Sci. Instrum. 86 125109Google Scholar

    [2]

    Danilewsky A, Wittge J, Hess A, Croll A, Allen D, Mcnally P, Vagovic P, Cecilia A, Li Z, Baumbach T, Gorostegui-Colinas E, Elizalde M R 2010 Nucl. Instrum. Methods B 268 399Google Scholar

    [3]

    Lee E H, Hwang J S, Lee C W, Yang D Y, Yang W H 2014 J. Mater. Process. Technol. 214 784Google Scholar

    [4]

    Eyer A, Nitsche R, Zimmermann H 1979 J. Cryst. Growth 47 219Google Scholar

    [5]

    Lorenz G, Neder R B, Marxreiter J, Frey F, Schneider J 1993 J. Appl. Cryst. 26 632Google Scholar

    [6]

    Sarin P, Yoon W, Jurkschat K, Zschack P, Kriven W M 2006 Rev. Sci. Instrum. 77 093906Google Scholar

    [7]

    Haboub A, Bale H A, Nasiatka J R, Cox B N, Marshall D B, Ritchie R O, MacDowell A A 2014 Rev. Sci. Instrum. 85 083702Google Scholar

    [8]

    英国散裂中子源官网 https://www.isis.stfc.ac.uk/Pages/ ENGINX-Furnace.aspx [2018-12-29]

    [9]

    Haynes R, Paradowska A M, Chowdhury M A H, Goodway C M, Done R, Kirichek O, Oliver E C 2012 Meas. Sci. Technol. 23 047002Google Scholar

    [10]

    Paradowska A M, Baczmansk A, Zhang S Y, Rao A, Bouchard P J, Kelleher J 2011 161st Iron and Steel Institute of Japan Meeting Tokyo, Japan, March 25-27, 2011, p539

    [11]

    Bourke M A M, Dunand D C, Ustundag E 2002 Appl. Phys. A 74 S1707Google Scholar

    [12]

    洛斯阿拉莫斯国家实验室官网 https://lansce.lanl.gov/ facilities/lujan/instruments/smarts/index.php[2018–12–29]

    [13]

    日本散裂中子源官网 https://j-parc.jp/researcher/MatLife/en/ se/bl19.html[2018–12–29]

    [14]

    Harjo S, Ito T, Aizawa K, Arima H, Abe J, Moriai A, Iwahashi T, Kamiyama T 2011 Mater. Sci. Forum 681 443Google Scholar

    [15]

    Santisteban J R, Daymond M R, James J A, Edwards L 2006 J. Appl. Crystallogr. 39 812Google Scholar

    [16]

    PRECISION CONTROL SYSTEMS公司官网http://www.pcscontrols.com/[2018–12–29]

    [17]

    Kang W M 2015 CN201510009283

    [18]

    Optical Properties of Metals, Hass G https://web.mit.edu/8.13/8.13c/references-fall/aip/aip-handbook-section6g.pdf [2019-3-20]

    [19]

    Sadao A 2012 The Handbook on Optical Constants of Metals (Vol. 1) (Singapore: World Scientific Publishing Co. Pte. Ltd.) p68

    [20]

    张福波, 边军, 杜林秀, 王国栋, 刘相华 2006 金属热处理 31 89Google Scholar

    Zhang F B, Bian J, Du L X, Wang G D, Liu X H 2006 Heat Treat. Met. 31 89Google Scholar

  • [1] 曹嵩, 殷雯, 周斌, 胡志良, 沈飞, 易天成, 王松林, 梁天骄. 中国散裂中子源二期靶站关键部件辐照损伤模拟计算. 物理学报, 2024, 73(9): 092501. doi: 10.7498/aps.73.20240088
    [2] 李强, 李样, 吕游, 潘子文, 鲍煜. 中国散裂中子源缪子谱仪及其应用展望. 物理学报, 2024, 73(19): 197602. doi: 10.7498/aps.73.20240926
    [3] 杨卫涛, 胡志良, 何欢, 莫莉华, 赵小红, 宋伍庆, 易天成, 梁天骄, 贺朝会, 李永宏, 王斌, 吴龙胜, 刘欢, 时光. 近存计算架构AI芯片中子单粒子效应. 物理学报, 2024, 73(13): 138502. doi: 10.7498/aps.73.20240430
    [4] 王德鑫, 张苏雅拉吐, 蒋伟, 任杰, 王金成, 唐靖宇, 阮锡超, 王宏伟, 陈志强, 黄美容, 唐鑫, 胡新荣, 李鑫祥, 刘龙祥, 刘丙岩, 孙慧, 张岳, 郝子锐, 宋娜, 李雪, 牛丹丹, 利国, 蒙古夫. 不同厚度镥样品中子俘获反应实验研究. 物理学报, 2022, 71(7): 072901. doi: 10.7498/aps.71.20212051
    [5] 张江林, 姜炳, 陈永浩, 郭子安, 王小鹤, 蒋伟, 易晗, 韩建龙, 胡继峰, 唐靖宇, 陈金根, 蔡翔舟. 基于中国散裂中子源反角白光中子束线的天然锂中子全截面测量. 物理学报, 2022, 71(5): 052901. doi: 10.7498/aps.71.20211646
    [6] 张奇玮, 栾广源, 任杰, 阮锡超, 贺国珠, 鲍杰, 孙琪, 黄翰雄, 王朝辉, 顾旻皓, 余滔, 解立坤, 陈永浩, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 韩长材, 韩子杰, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 蒋伟, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 羊奕伟, 易晗, 于莉, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏, 朱兴华. 基于CSNS反角白光中子源的中子俘获反应截面测量技术研究. 物理学报, 2021, 70(22): 222801. doi: 10.7498/aps.70.20210742
    [7] 周斌, 于全芝, 胡志良, 陈亮, 张雪荧, 梁天骄. 高能质子在散裂靶中的能量沉积计算与实验验证. 物理学报, 2021, 70(5): 052401. doi: 10.7498/aps.70.20201504
    [8] 江明全, 李欣, 房雷鸣, 谢雷, 陈喜平, 胡启威, 李强, 李青泽, 陈波, 贺端威. 基于PE型压机中子衍射高温高压组装的优化设计与实验验证. 物理学报, 2020, 69(22): 226101. doi: 10.7498/aps.69.20200832
    [9] 任杰, 阮锡超, 陈永浩, 蒋伟, 鲍杰, 栾广源, 张奇玮, 黄翰雄, 王朝辉, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 顾旻皓, 韩长材, 韩子杰, 贺国珠, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 易晗, 于莉, 余滔, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子源束内伽马射线研究. 物理学报, 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [10] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 基于中国散裂中子源的商用静态随机存取存储器中子单粒子效应实验研究. 物理学报, 2020, 69(16): 162901. doi: 10.7498/aps.69.20200265
    [11] 胡志良, 杨卫涛, 李永宏, 李洋, 贺朝会, 王松林, 周斌, 于全芝, 何欢, 谢飞, 白雨蓉, 梁天骄. 应用中国散裂中子源9号束线端研究65 nm微控制器大气中子单粒子效应. 物理学报, 2019, 68(23): 238502. doi: 10.7498/aps.68.20191196
    [12] 鲍杰, 陈永浩, 张显鹏, 栾广源, 任杰, 王琦, 阮锡超, 张凯, 安琪, 白怀勇, 曹平, 陈琪萍, 程品晶, 崔增琪, 樊瑞睿, 封常青, 顾旻皓, 郭凤琴, 韩长材, 韩子杰, 贺国珠, 何泳成, 何越峰, 黄翰雄, 黄蔚玲, 黄锡汝, 季筱路, 吉旭阳, 江浩雨, 蒋伟, 敬罕涛, 康玲, 康明涛, 兰长林, 李波, 李论, 李强, 李晓, 李阳, 李样, 刘荣, 刘树彬, 刘星言, 马应林, 宁常军, 聂阳波, 齐斌斌, 宋朝晖, 孙虹, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 王鹏程, 王涛峰, 王艳凤, 王朝辉, 王征, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 杨毅, 易晗, 于莉, 余滔, 于永积, 张国辉, 张旌, 张林浩, 张利英, 张清民, 张奇伟, 张玉亮, 张志永, 赵映潭, 周良, 周祖英, 朱丹阳, 朱科军, 朱鹏. 更正:中国散裂中子源反角白光中子束流参数的初步测量. 物理学报, 2019, 68(10): 109901. doi: 10.7498/aps.68.109901
    [13] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 中国散裂中子源在大气中子单粒子效应研究中的应用评估. 物理学报, 2019, 68(5): 052901. doi: 10.7498/aps.68.20181843
    [14] 鲍杰, 陈永浩, 张显鹏, 栾广源, 任杰, 王琦, 阮锡超, 张凯, 安琪, 白怀勇, 曹平, 陈琪萍, 程品晶, 崔增琪, 樊瑞睿, 封常青, 顾旻皓, 郭凤琴, 韩长材, 韩子杰, 贺国珠, 何泳成, 何越峰, 黄翰雄, 黄蔚玲, 黄锡汝, 季筱路, 吉旭阳, 江浩雨, 蒋伟, 敬罕涛, 康玲, 康明涛, 兰长林, 李波, 李论, 李强, 李晓, 李阳, 李样, 刘荣, 刘树彬, 刘星言, 马应林, 宁常军, 聂阳波, 齐斌斌, 宋朝晖, 孙虹, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 王鹏程, 王涛峰, 王艳凤, 王朝辉, 王征, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 杨毅, 易晗, 于莉, 余滔, 于永积, 张国辉, 张旌, 张林浩, 张利英, 张清民, 张奇伟, 张玉亮, 张志永, 赵映潭, 周良, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子束流参数的初步测量. 物理学报, 2019, 68(8): 080101. doi: 10.7498/aps.68.20182191
    [15] 胡钧, 高嶷. 界面水与催化. 物理学报, 2019, 68(1): 016803. doi: 10.7498/aps.68.20182180
    [16] 温志文, 祁辉荣, 张余炼, 王海云, 刘凌, 王艳凤, 张建, 李玉红, 孙志嘉. 用于中国散裂中子源多功能反射谱仪的高气压多丝正比室探测器的研制. 物理学报, 2018, 67(7): 072901. doi: 10.7498/aps.67.20172618
    [17] 沈飞, 梁泰然, 殷雯, 于全芝, 左太森, 姚泽恩, 朱涛, 梁天骄. 中国散裂中子源多功能反射谱仪屏蔽设计. 物理学报, 2014, 63(15): 152801. doi: 10.7498/aps.63.152801
    [18] 于全芝, 殷雯, 梁天骄. 中国散裂中子源靶站重要部件的辐照损伤计算与分析. 物理学报, 2011, 60(5): 052501. doi: 10.7498/aps.60.052501
    [19] 超导材料组. 扩散Nb3Ga样品的实验观察. 物理学报, 1976, 25(2): 122-123. doi: 10.7498/aps.25.122
    [20] 锰锌铁氧体单晶小组. 高温氧压单晶炉. 物理学报, 1976, 25(2): 178-178. doi: 10.7498/aps.25.178
计量
  • 文章访问数:  10393
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-29
  • 修回日期:  2019-05-07
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-05

/

返回文章
返回