搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近存计算架构AI芯片中子单粒子效应

杨卫涛 胡志良 何欢 莫莉华 赵小红 宋伍庆 易天成 梁天骄 贺朝会 李永宏 王斌 吴龙胜 刘欢 时光

引用本文:
Citation:

近存计算架构AI芯片中子单粒子效应

杨卫涛, 胡志良, 何欢, 莫莉华, 赵小红, 宋伍庆, 易天成, 梁天骄, 贺朝会, 李永宏, 王斌, 吴龙胜, 刘欢, 时光

Neutron induced single event effects on near-memory computing architecture AI chips

Yang Wei-Tao, Hu Zhi-Liang, He Huan, Mo Li-Hua, Zhao Xiao-Hong, Song Wu-Qing, Yi Tian-Cheng, Liang Tian-Jiao, He Chao-Hui, Li Yong-Hong, Wang Bin, Wu Long-Sheng, Liu Huan, Shi Guang
PDF
HTML
导出引用
  • 利用中国散裂中子源大气中子辐照谱仪, 对某款16 nm FinFET工艺制造的近存计算架构人工智能AI芯片进行了大气中子单粒子效应辐照测试研究. 辐照测试中, 在累积中子注量为1.51×1010 n/cm2 (1 MeV以上)情况下, 共探测到5类共计35个软错误, 尤其是探测到不同于传统冯诺伊曼架构芯片单粒子效应的计算与存储单元同时发生单粒子效应新现象. 基于所探测到的两类功能单元同时单粒子效应新现象, 结合蒙特卡罗仿真模拟, 初步给出了近存计算架构AI芯片内物理布局上, 核心功能单元间可降低同时发生单粒子效应的安全间距建议. 该研究为进一步探究非传统冯诺伊曼架构芯片单粒子效应提供了参考与借鉴.
    For the near-memory computing architecture AI chip manufactured by using 16 nm FinFET technology, atmospheric neutron single event effect irradiation tests are conducted for the first time in China by using the atmospheric neutron irradiation spectrometer (ANIS) at the China Spallation Neutron Source. During the irradiation, the YOLOV5 algorithm neural network running on the AI chip is used for real-time detection of target objects, including mice, keyboard, and luggage. The purpose of the test is to investigate the new single event effect that may occur on near-memory computing architecture AI chip. Finally, at an accumulated neutron fluence of 1.51×1010 n·cm–2 (above 1 MeV), a total of 35 soft errors are detected in 5 categories. Particularly noteworthy is the observation of a new finding, where both computing and memory units experience single event effects simultaneously, which is different from the traditional von Neumann architecture chips. Based on the single event effects that occur simultaneously in these two units, combined with Monte Carlo simulation, a preliminary estimation is made of the physical layout distance between the computing unit and the memory unit on the chip. Furthermore, suggestions are proposed to simultaneously reduce the risk of single event effect in multi cells. This study provides valuable reference and insights for further exploring the single event effects in non-traditional von Neumann architecture chips.
      通信作者: 杨卫涛, yangweitao01@xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12275211)、国家自然科学基金青年科学基金(批准号: 62104260)、陕西省自然科学基础研究计划(批准号: 2023-JC-QN-0015)和中央高校基本科研业务费专项资金(批准号: XJSJ23049)资助的课题.
      Corresponding author: Yang Wei-Tao, yangweitao01@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12275211), the National Natural Science Foundation of China Young Scientists Fund (Grant No. 62104260), the Natural Science Basic Research Plan of Shaanxi Province, China (Grant No. 2023-JC-QN-0015), and the Fundamental Research Funds for the Central Universities, China (Grant No. XJSJ23049).
    [1]

    周正, 黄鹏, 康晋锋 2022 物理学报 71 148507Google Scholar

    Zhou Z, Huang P, Kang J F 2022 Acta Phys. Sin. 71 148507Google Scholar

    [2]

    郭昕婕, 王光燿, 王绍迪 2023 电子与信息学报 45 1888Google Scholar

    Guo X J, Wang G Y, Wang S D 2023 J. Electron. Inf. Technol. 45 1888Google Scholar

    [3]

    Sun Z, Kvatinsky S, Si X, Mehonic A, Cai Y, Huang R 2023 Nat. Electron. 6 823Google Scholar

    [4]

    康旺, 寇竞, 赵巍胜 2024 中国科学: 信息科学 54 16Google Scholar

    Kang W, Kou J, Zhao W S 2024 Sci. Sin. Inf. 54 16Google Scholar

    [5]

    Kamil K, Sudeep P, Ryan G K 2020 J. Low Power Electron. Appl. 10 30Google Scholar

    [6]

    刘伟强, 陈珂, 吴比, 邓尔雅, 王佑, 龚宇, 崔益军, 王成华 2024 中国科学: 信息科学 54 34Google Scholar

    Liu W Q, Chen K, Wu B, Deng E Y, Wang Y, Gong Y, Cui Y J, Wang C H 2024 Sci. Sin. Inf. 54 34Google Scholar

    [7]

    Wilfried H, Anand R, Kaushik R, Bhaswar C, Charudatta M P, Cheng W, Supratik G 2023 Adv. Mater. 35 2204944Google Scholar

    [8]

    胡志良, 杨卫涛, 李永宏, 李洋, 贺朝会, 王松林, 周斌, 于全芝, 何欢, 谢飞, 白雨蓉, 梁天骄 2019 物理学报 68 238502Google Scholar

    Hu Z L, Yang W T, Li Y H, Li Y, He C H, Wang S L, Zhou B, Yu Q Z, He H, Xie F, Bai Y R, Liang T J 2019 Acta Phys. Sin. 68 238502Google Scholar

    [9]

    Yang W T, Li Y H, Li Y, Hu Z L, Xie F, He C H, Wang S L, Zhou B, He H, Khan W, Liang T J 2019 Microelec. Reliab. 99 119Google Scholar

    [10]

    Hu Z L, Yang W T, Zhou B, Liu Y N, He C H, Wang S L, Yu Q Z, Liang T J 2023 J. Nucl. Sci. Technol. 60 473Google Scholar

    [11]

    王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹 2020 物理学报 69 162901Google Scholar

    Wang X, Zhang F Q, Chen W, Guo X Q, Ding L L, Luo Y H 2020 Acta Phys. Sin. 69 162901Google Scholar

    [12]

    王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹 2019 物理学报 68 052901Google Scholar

    Wang X, Zhang F Q, Chen W, Guo X Q, Ding L L, Luo Y H 2019 Acta Phys. Sin. 68 052901Google Scholar

    [13]

    曹嵩, 殷雯, 周斌, 胡志良, 沈飞, 易天成, 王松林, 梁天骄 2024 物理学报 73 092501Google Scholar

    Cao S, Yin W, Zhou B, Hu Z L, Shen F, Yi T C, Wang S L, Liang T J 2024 Acta Phys. Sin. 73 092501Google Scholar

    [14]

    Wang H B, Wang Y S, Xiao J H, Wang S L, Liang T J 2021 IEEE Trans. Nucl. Sci. 68 394Google Scholar

    [15]

    Dimitris A, Nikos F, Aitzan S, Vasileios V, Ioanna S, Mihalis P, Ye R, John G, Mikel L, Maria K, Carlo C, Chris F 2024 IEEE Trans. Reliab. 73 771Google Scholar

    [16]

    Rubens L R J, Sujit M, Carlo C, Maria K, Manon L, Christopher F, Paolo R 2022 IEEE Trans. Nucl. Sci. 69 567Google Scholar

    [17]

    Jordan D A, Jennings C L, Michael J W 2018 IEEE Radiation Effects Data Workshop (REDW) Waikoloa, HI, USA

    [18]

    Avi B, Givat S, Or D, Kiryat O, Daniel C, Ramat G, Gilad N, Modiin-Maccabim R 2023 US Patent 11551028 B2

    [19]

    Hailo-8 AI Accelerator. https://hailo.ai/products/ai-accelerators/hailo-8-ai-accelerator/. [2023-10-1]

    [20]

    Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-induced Soft Errors in Semiconductor Devices. https://www.jedec.org/document_search?search_api_views_fulltext=JESD89A. [2024-2-11]

    [21]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci 53 270Google Scholar

    [22]

    张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞 2020 物理学报 69 056101Google Scholar

    Zhang Z G, Lei Z F, Tong T, Li X H, Wang S L, Liang T J, Xi K, Peng C, He Y J, Huang Y, En Y F 2020 Acta Phys. Sin. 69 056101Google Scholar

    [23]

    Mo L H, Ye B, Liu J, Zhang Z G, Tong T, Sun Y M, Luo J 2021 Nucl. Phys. Rev. 38 327Google Scholar

    [24]

    Yang S H, Zhang Z Z, Lei Z F, Tong T, Li X H, Xi K, Wu F G 2022 Appl. Sci. 12 9685Google Scholar

    [25]

    Takashi K, Masanori H, Hideya M 2020 IEEE Trans. Nucl. Sci. 67 1485Google Scholar

  • 图 1  不同架构芯片结构示意图[2,7] (a) 冯诺依曼; (b) 近存计算; (c) 存内计算

    Fig. 1.  Different chip architectures[2,7]: (a) Von Neumann; (b) near memory computing; (c) in memory computing.

    图 2  待测芯片数据流架构及AI应用示意图

    Fig. 2.  Diagram of data flow architecture and AI applications for the test chip.

    图 3  开盖后的待测芯片照片

    Fig. 3.  Photo of the de-capped test chip.

    图 4  辐照实验所用中子能谱, 其中ANIS为实验所用能谱, JEDEC为参考能谱

    Fig. 4.  Neutron spectrum applied in the irradiation test, ANIS with the utilized spectrum during irradiation test, and the JEDEC with the referred.

    图 5  辐照实验现场照片

    Fig. 5.  Photo of the irradiation worksite.

    图 6  所测试的AI芯片纵向结构信息

    Fig. 6.  Vertical structure of the tested AI chip.

    图 7  次级粒子影响多个单元示意图

    Fig. 7.  Diagram of affected cells by secondary particle.

    图 8  大气中子入射硅半导体所产生的主要次级粒子

    Fig. 8.  Secondary particles of atmospheric neutron striking silicon.

    表 1  探测到的不同类型单粒子效应

    Table 1.  Detected kinds of single event effect.

    软错误数量
    SEU/MEM30
    SEU/COMP2
    SEU/MEM+COMP1
    Timeout1
    Process-killed1
    下载: 导出CSV

    表 2  存储单元单粒子效应

    Table 2.  Single event effect in memory cell.

    翻转单元 数量 翻转单元 数量
    1 3 10 8
    2 5 11 1
    4 2 13 1
    8 10
    下载: 导出CSV

    表 3  不同单元效应截面和软错误率

    Table 3.  Cross section and soft error rate of different cells.

    单元单粒子效应截面/(10–10 cm2)软错误率/FIT
    存储20.530.40
    计算1.992.94
    控制1.321.96
    下载: 导出CSV
  • [1]

    周正, 黄鹏, 康晋锋 2022 物理学报 71 148507Google Scholar

    Zhou Z, Huang P, Kang J F 2022 Acta Phys. Sin. 71 148507Google Scholar

    [2]

    郭昕婕, 王光燿, 王绍迪 2023 电子与信息学报 45 1888Google Scholar

    Guo X J, Wang G Y, Wang S D 2023 J. Electron. Inf. Technol. 45 1888Google Scholar

    [3]

    Sun Z, Kvatinsky S, Si X, Mehonic A, Cai Y, Huang R 2023 Nat. Electron. 6 823Google Scholar

    [4]

    康旺, 寇竞, 赵巍胜 2024 中国科学: 信息科学 54 16Google Scholar

    Kang W, Kou J, Zhao W S 2024 Sci. Sin. Inf. 54 16Google Scholar

    [5]

    Kamil K, Sudeep P, Ryan G K 2020 J. Low Power Electron. Appl. 10 30Google Scholar

    [6]

    刘伟强, 陈珂, 吴比, 邓尔雅, 王佑, 龚宇, 崔益军, 王成华 2024 中国科学: 信息科学 54 34Google Scholar

    Liu W Q, Chen K, Wu B, Deng E Y, Wang Y, Gong Y, Cui Y J, Wang C H 2024 Sci. Sin. Inf. 54 34Google Scholar

    [7]

    Wilfried H, Anand R, Kaushik R, Bhaswar C, Charudatta M P, Cheng W, Supratik G 2023 Adv. Mater. 35 2204944Google Scholar

    [8]

    胡志良, 杨卫涛, 李永宏, 李洋, 贺朝会, 王松林, 周斌, 于全芝, 何欢, 谢飞, 白雨蓉, 梁天骄 2019 物理学报 68 238502Google Scholar

    Hu Z L, Yang W T, Li Y H, Li Y, He C H, Wang S L, Zhou B, Yu Q Z, He H, Xie F, Bai Y R, Liang T J 2019 Acta Phys. Sin. 68 238502Google Scholar

    [9]

    Yang W T, Li Y H, Li Y, Hu Z L, Xie F, He C H, Wang S L, Zhou B, He H, Khan W, Liang T J 2019 Microelec. Reliab. 99 119Google Scholar

    [10]

    Hu Z L, Yang W T, Zhou B, Liu Y N, He C H, Wang S L, Yu Q Z, Liang T J 2023 J. Nucl. Sci. Technol. 60 473Google Scholar

    [11]

    王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹 2020 物理学报 69 162901Google Scholar

    Wang X, Zhang F Q, Chen W, Guo X Q, Ding L L, Luo Y H 2020 Acta Phys. Sin. 69 162901Google Scholar

    [12]

    王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹 2019 物理学报 68 052901Google Scholar

    Wang X, Zhang F Q, Chen W, Guo X Q, Ding L L, Luo Y H 2019 Acta Phys. Sin. 68 052901Google Scholar

    [13]

    曹嵩, 殷雯, 周斌, 胡志良, 沈飞, 易天成, 王松林, 梁天骄 2024 物理学报 73 092501Google Scholar

    Cao S, Yin W, Zhou B, Hu Z L, Shen F, Yi T C, Wang S L, Liang T J 2024 Acta Phys. Sin. 73 092501Google Scholar

    [14]

    Wang H B, Wang Y S, Xiao J H, Wang S L, Liang T J 2021 IEEE Trans. Nucl. Sci. 68 394Google Scholar

    [15]

    Dimitris A, Nikos F, Aitzan S, Vasileios V, Ioanna S, Mihalis P, Ye R, John G, Mikel L, Maria K, Carlo C, Chris F 2024 IEEE Trans. Reliab. 73 771Google Scholar

    [16]

    Rubens L R J, Sujit M, Carlo C, Maria K, Manon L, Christopher F, Paolo R 2022 IEEE Trans. Nucl. Sci. 69 567Google Scholar

    [17]

    Jordan D A, Jennings C L, Michael J W 2018 IEEE Radiation Effects Data Workshop (REDW) Waikoloa, HI, USA

    [18]

    Avi B, Givat S, Or D, Kiryat O, Daniel C, Ramat G, Gilad N, Modiin-Maccabim R 2023 US Patent 11551028 B2

    [19]

    Hailo-8 AI Accelerator. https://hailo.ai/products/ai-accelerators/hailo-8-ai-accelerator/. [2023-10-1]

    [20]

    Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-induced Soft Errors in Semiconductor Devices. https://www.jedec.org/document_search?search_api_views_fulltext=JESD89A. [2024-2-11]

    [21]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci 53 270Google Scholar

    [22]

    张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞 2020 物理学报 69 056101Google Scholar

    Zhang Z G, Lei Z F, Tong T, Li X H, Wang S L, Liang T J, Xi K, Peng C, He Y J, Huang Y, En Y F 2020 Acta Phys. Sin. 69 056101Google Scholar

    [23]

    Mo L H, Ye B, Liu J, Zhang Z G, Tong T, Sun Y M, Luo J 2021 Nucl. Phys. Rev. 38 327Google Scholar

    [24]

    Yang S H, Zhang Z Z, Lei Z F, Tong T, Li X H, Xi K, Wu F G 2022 Appl. Sci. 12 9685Google Scholar

    [25]

    Takashi K, Masanori H, Hideya M 2020 IEEE Trans. Nucl. Sci. 67 1485Google Scholar

  • [1] 曹嵩, 殷雯, 周斌, 胡志良, 沈飞, 易天成, 王松林, 梁天骄. 中国散裂中子源二期靶站关键部件辐照损伤模拟计算. 物理学报, 2024, 73(9): 092501. doi: 10.7498/aps.73.20240088
    [2] 黄馨雨, 张晋新, 王信, 吕玲, 郭红霞, 冯娟, 闫允一, 王辉, 戚钧翔. 基于锗硅异质结双极晶体管的低噪声放大器及其反模结构的单粒子瞬态数值仿真研究. 物理学报, 2024, 73(12): 126103. doi: 10.7498/aps.73.20240307
    [3] 李培, 董志勇, 郭红霞, 张凤祁, 郭亚鑫, 彭治钢, 贺朝会. SiGe BiCMOS低噪声放大器激光单粒子效应研究. 物理学报, 2024, 73(4): 044301. doi: 10.7498/aps.73.20231451
    [4] 琚安安, 郭红霞, 张凤祁, 刘晔, 钟向丽, 欧阳晓平, 丁李利, 卢超, 张鸿, 冯亚辉. N阱电阻的单粒子效应仿真. 物理学报, 2023, 72(2): 026102. doi: 10.7498/aps.72.20220125
    [5] 傅婧, 蔡毓龙, 李豫东, 冯婕, 文林, 周东, 郭旗. 质子辐照下正照式和背照式图像传感器的单粒子瞬态效应. 物理学报, 2022, 71(5): 054206. doi: 10.7498/aps.71.20211838
    [6] 沈睿祥, 张鸿, 宋宏甲, 侯鹏飞, 李波, 廖敏, 郭红霞, 王金斌, 钟向丽. 全耗尽绝缘体上硅氧化铪基铁电场效应晶体管存储单元单粒子效应计算机模拟研究. 物理学报, 2022, 71(6): 068501. doi: 10.7498/aps.71.20211655
    [7] 任杰, 阮锡超, 陈永浩, 蒋伟, 鲍杰, 栾广源, 张奇玮, 黄翰雄, 王朝辉, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 顾旻皓, 韩长材, 韩子杰, 贺国珠, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 易晗, 于莉, 余滔, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子源束内伽马射线研究. 物理学报, 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [8] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 基于中国散裂中子源的商用静态随机存取存储器中子单粒子效应实验研究. 物理学报, 2020, 69(16): 162901. doi: 10.7498/aps.69.20200265
    [9] 胡志良, 杨卫涛, 李永宏, 李洋, 贺朝会, 王松林, 周斌, 于全芝, 何欢, 谢飞, 白雨蓉, 梁天骄. 应用中国散裂中子源9号束线端研究65 nm微控制器大气中子单粒子效应. 物理学报, 2019, 68(23): 238502. doi: 10.7498/aps.68.20191196
    [10] 詹霞, JoeKelleher, 高建波, 马艳玲, 初铭强, 张书彦, 张鹏, SanjooramPaddea, 贡志锋, 侯晓东. 英国散裂中子源工程材料原位加载衍射实验高温样品环境优化设计. 物理学报, 2019, 68(13): 132901. doi: 10.7498/aps.68.20182295
    [11] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 中国散裂中子源在大气中子单粒子效应研究中的应用评估. 物理学报, 2019, 68(5): 052901. doi: 10.7498/aps.68.20181843
    [12] 赵雯, 郭晓强, 陈伟, 邱孟通, 罗尹虹, 王忠明, 郭红霞. 质子与金属布线层核反应对微纳级静态随机存储器单粒子效应的影响分析. 物理学报, 2015, 64(17): 178501. doi: 10.7498/aps.64.178501
    [13] 李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新. 锗硅异质结双极晶体管单粒子效应加固设计与仿真. 物理学报, 2015, 64(11): 118502. doi: 10.7498/aps.64.118502
    [14] 张晋新, 贺朝会, 郭红霞, 唐杜, 熊涔, 李培, 王信. 不同偏置影响锗硅异质结双极晶体管单粒子效应的三维数值仿真研究. 物理学报, 2014, 63(24): 248503. doi: 10.7498/aps.63.248503
    [15] 肖尧, 郭红霞, 张凤祁, 赵雯, 王燕萍, 丁李利, 范雪, 罗尹虹, 张科营. 累积剂量影响静态随机存储器单粒子效应敏感性研究. 物理学报, 2014, 63(1): 018501. doi: 10.7498/aps.63.018501
    [16] 张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟. 重离子导致的锗硅异质结双极晶体管单粒子效应电荷收集三维数值模拟. 物理学报, 2013, 62(4): 048501. doi: 10.7498/aps.62.048501
    [17] 刘必慰, 陈建军, 陈书明, 池雅庆. 带有n+深阱的三阱CMOS工艺中寄生NPN双极效应及其对电荷共享的影响. 物理学报, 2012, 61(9): 096102. doi: 10.7498/aps.61.096102
    [18] 于全芝, 殷雯, 梁天骄. 中国散裂中子源靶站重要部件的辐照损伤计算与分析. 物理学报, 2011, 60(5): 052501. doi: 10.7498/aps.60.052501
    [19] 蔡明辉, 韩建伟, 李小银, 李宏伟, 张振力. 临近空间大气中子环境的仿真研究. 物理学报, 2009, 58(9): 6659-6664. doi: 10.7498/aps.58.6659
    [20] 贺朝会, 耿斌, 杨海亮, 陈晓华, 王燕萍, 李国政. 浮栅ROM器件的辐射效应实验研究. 物理学报, 2003, 52(1): 180-187. doi: 10.7498/aps.52.180
计量
  • 文章访问数:  563
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-25
  • 修回日期:  2024-05-07
  • 上网日期:  2024-05-22
  • 刊出日期:  2024-07-05

/

返回文章
返回