搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于锗硅异质结双极晶体管的低噪声放大器及其反模结构的单粒子瞬态数值仿真研究

黄馨雨 张晋新 王信 吕玲 郭红霞 冯娟 闫允一 王辉 戚钧翔

引用本文:
Citation:

基于锗硅异质结双极晶体管的低噪声放大器及其反模结构的单粒子瞬态数值仿真研究

黄馨雨, 张晋新, 王信, 吕玲, 郭红霞, 冯娟, 闫允一, 王辉, 戚钧翔

Numerical simulation of single-particle transients in low-noise amplifiers based on Silicon-Germanium heterojunction transistors and inverse-mode structures

Huang Xin-Yu, Zhang Jin-Xin, Wang Xin, LÜ Ling, Guo Hong-Xia, Feng Juan, Yan Yun-Yi, Wang Hui, Qi Jun-Xiang
PDF
导出引用
  • 文章针对锗硅异质结双极晶体管(SiGe HBT)进行TCAD仿真建模,基于SiGe HBT器件模型搭建低噪放大器(LNA)电路,开展单粒子瞬态(SET)的混合仿真,研究SET脉冲随离子不同LET值、入射角度的变化规律,结果表明:随着入射离子LET值的增大,LNA端口的SET脉冲的幅值增大,振荡时间延长;随着离子入射角的增大,LNA端口的SET脉冲的幅值先增大后减小,振荡时间减小。使用反模(IM)共射共基结构(Cascode)降低LNA对单粒子效应的敏感度,验证了采用IM结构的LNA电路的相关射频性能。针对离子于共基极(CB)晶体管、共发射极(CE)晶体管两种位置入射进行SET实验。实验结果与本实验中的正向模式相比,IM Cascode结构的LNA电路的瞬态电流持续时间明显减少,并且峰值减小了66%及以上。
    In the article,TCAD simulation modeling is carried out for silicon germanium heterojunction transistor (SiGe HBT),and an X-band low noise amplifier (LNA) circuit is built based on the SiGe HBT device model to carry out the hybrid simulation of single-particle transient (SET).The variation rule of SET pulse with different LET values and incident angles of ions is studied,and the results show that:with the increase of incident LET value,the amplitude of SET pulse at the LNA port increases,and the oscillation time is prolonged;with the increase of incident angle of ions,the amplitude of SET pulse at the LNA port first increases and then decreases,and the oscillation time decreases.With the development of the characterization process,the cutoff frequency (fT),as well as the maximum oscillation frequency (fMAX) of SiGe HBT devices with IM structures,were measured considering the use of inverse-mode (IM) common emitter and common-base structures (Cascode) to reduce the sensitivity of the LNAs to single-particle effects.The article calibrates the devices of the TCAD platform as well as the devices of the ADS platform,establishes F-F LNAs as well as I-F LNAs on the ADS,respectively,and verifies the relevant RF performances of the LNA circuits using the IM-structured SiGe HBTs as the core devices.SET experiments are performed on the Sentaurus TCAD platform for the F-F LNA and I-F LNA circuits for ions incident at two positions:common base (CB) transistor and common emitter (CE) transistor,respectively.It is concluded that the LNA with IM structure still shows good RF performance compared with the standard LNA at 130 nm.The transient current duration of the LNA circuit with IM Cascode structure is significantly reduced,and the peak value is reduced by 66% or more,which significantly reduces the sensitivity of the SiGe LNA circuit to SET.
  • [1]

    Xin Q M, Liu Y Q, Jia S M 2011 Semicond. Technol. 36 672(in Chinese)[辛启明,刘英坤,贾素梅2011半导体技术36 672]

    [2]

    Meyerson B S 1986 Appl. Phys. Lett. 48 797

    [3]

    Man L 2019 Chin. New Telecomm. 21 227(in Chinese)[马良2019中国新通信21 227]

    [4]

    Xie M X, Gu N N 2008 Chin. New Telecomm. 38 34(in Chinese)[谢孟贤,古妮娜2008中国新通信38 34]

    [5]

    Çaışkan C, Kalyoncu I, Yazici M, Gurbuz Y 2018 IEEE Trans. Circuits Syst. I, Reg. Papers 66 1419

    [6]

    Bao K, Zhou J, Shen Y 2017 Solid State Electr. Res. Prog. 04 23(in Chinese)[包宽,周骏,沈亚2017固体电子学研究与进展04 23]

    [7]

    Li P, Guo H X, Guo Q, Wen L, Cui J W, Wang X, Zhang J X 2015 Acta Phys. Sin. 11 421(in Chinese)[李培,郭红霞,郭旗,文林,崔江维,王信,张晋新2015物理学报11 421]

    [8]

    Appaswamy A 2009 Ph. D Dissertation (Georgia:Georgia Institute of Technology)

    [9]

    Sheng L, Yong-Bin K, Fabrizio L 2011 IEEE Trans. Device Mater. Rel. 12 68

    [10]

    Jung S, Lourenco N E, Song I, Oakley M A, England T D, Arora R, Cressler J D 2014 IEEE Trans. Nucl. Sci. 61 3193

    [11]

    Al Seragi E M, Dash S, Muthuseenu K, Cressler J D, Barnaby H J, Khachatrian A, Buchner S P, McMorrow D, Zeinolabedinzadeh S 2021 IEEE Trans. Nucl. Sci. 69 2154

    [12]

    Li P, He C H, Guo H X, Zhang J X, Li Y, Wei J 2019 Microelectron. Reliab. 103 113499

    [13]

    Zhang J X, Guo Q, Guo H X, Lu W, He C H, Wang X, Wen L 2018 Microelectron. Reliab. 84 105

    [14]

    Jin D Y, Wu L, Zhang W R, Na W C, Yang S M, Jia X X, Yang Y Q 2022 J. Beijing Univ. Technol. 48 1280

    [15]

    Zhang J X, Guo H X, Pan X Y, Guo Q, Zhang F Q, Feng J, Wu X X 2018 Chin. Phys. B 27 108501

    [16]

    Zhang J X, Wang X, Guo H X, Feng J, Lv L, Li P, Yan Y Y, Wu X X, Wang H 2022 Acta Phys. Sin. 71 058502(in Chinese)[张晋新,王信,郭红霞,冯娟,吕玲,李培,闫允一,吴宪祥,王辉2022物理学报71 058502]

    [17]

    Lourenco N E, Zeinolabedinzadeh S, Ildefonso A, Fleetwood Z E, Coen C T, Song I, Cressler J D 2016 IEEE Trans. Nucl. Sci. 63 273

    [18]

    Chen W, Pouget V, Barnaby H J, Cressler J D, Niu G, Fouillat P, Lewis D 2003 IEEE Trans. Nucl. Sci. 50 2081

    [19]

    Zeinolabedinzadeh S, Ying H, Fleetwood Z E, Roche N J H, Khachatrian A, McMorrow D, Cressler J D 2016 IEEE Trans. Nucl. Sci. 64 125

    [20]

    Lourenco N E, Phillips S D, England T D, Cardoso A S, Fleetwood Z E, Moen K A, Cressler J D 2013 IEEE Trans. Nucl. Sci. 60 4175

    [21]

    Phillips S D, Moen K A, Lourenco N E, Cressler J D 2012 IEEE Trans. Nucl. Sci. 59 2682

    [22]

    Li P, He C H, Guo H X, Zhang J X, Wei J N, Liu M H 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 523(in Chinese)[李培,贺朝会,郭红霞,张晋新,魏佳男,刘默寒2022太赫兹科学与电子信息学报20 523]

    [23]

    Najafizadeh L, Phillips S D, Moen K A, Diestelhorst R M, Bellini M, Saha P K, Marshall P W 2009 IEEE Trans. Nucl. Sci. 56 3469

    [24]

    Ildefonso A, Coen C T, Fleetwood Z E, Tzintzarov G N, Wachter M T, Khachatrian A, Cressler J D 2017 IEEE Trans. Nucl. Sci. 65 239

    [25]

    Song I, Raghunathan U S, Lourenco N E, Fleetwood Z E, Oakley M A, Jung S, Cressler J D 2016 IEEE Trans. Nucl. Sci. 63 1099

  • [1] 李培, 董志勇, 郭红霞, 张凤祁, 郭亚鑫, 彭治钢, 贺朝会. SiGe BiCMOS低噪声放大器激光单粒子效应研究. 物理学报, doi: 10.7498/aps.73.20231451
    [2] 琚安安, 郭红霞, 张凤祁, 刘晔, 钟向丽, 欧阳晓平, 丁李利, 卢超, 张鸿, 冯亚辉. N阱电阻的单粒子效应仿真. 物理学报, doi: 10.7498/aps.72.20220125
    [3] 沈睿祥, 张鸿, 宋宏甲, 侯鹏飞, 李波, 廖敏, 郭红霞, 王金斌, 钟向丽. 全耗尽绝缘体上硅氧化铪基铁电场效应晶体管存储单元单粒子效应计算机模拟研究. 物理学报, doi: 10.7498/aps.71.20211655
    [4] 傅婧, 蔡毓龙, 李豫东, 冯婕, 文林, 周东, 郭旗. 质子辐照下正照式和背照式图像传感器的单粒子瞬态效应. 物理学报, doi: 10.7498/aps.71.20211838
    [5] 张晋新, 王信, 郭红霞, 冯娟. 基于三维数值仿真的SiGe HBT总剂量效应关键影响因素机理研究. 物理学报, doi: 10.7498/aps.70.20211795
    [6] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 中国散裂中子源在大气中子单粒子效应研究中的应用评估. 物理学报, doi: 10.7498/aps.68.20181843
    [7] 赵雯, 郭晓强, 陈伟, 邱孟通, 罗尹虹, 王忠明, 郭红霞. 质子与金属布线层核反应对微纳级静态随机存储器单粒子效应的影响分析. 物理学报, doi: 10.7498/aps.64.178501
    [8] 李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新. 锗硅异质结双极晶体管单粒子效应加固设计与仿真. 物理学报, doi: 10.7498/aps.64.118502
    [9] 肖尧, 郭红霞, 张凤祁, 赵雯, 王燕萍, 丁李利, 范雪, 罗尹虹, 张科营. 累积剂量影响静态随机存储器单粒子效应敏感性研究. 物理学报, doi: 10.7498/aps.63.018501
    [10] 张晋新, 贺朝会, 郭红霞, 唐杜, 熊涔, 李培, 王信. 不同偏置影响锗硅异质结双极晶体管单粒子效应的三维数值仿真研究. 物理学报, doi: 10.7498/aps.63.248503
    [11] 张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟. 重离子导致的锗硅异质结双极晶体管单粒子效应电荷收集三维数值模拟. 物理学报, doi: 10.7498/aps.62.048501
    [12] 张滨, 杨银堂, 李跃进, 徐小波. SOI SiGe HBT电学性能研究. 物理学报, doi: 10.7498/aps.61.238502
    [13] 胡辉勇, 舒钰, 张鹤鸣, 宋建军, 宣荣喜, 秦珊珊, 屈江涛. 含有本征SiGe层的SiGe异质结双极晶体管集电结耗尽层宽度模型. 物理学报, doi: 10.7498/aps.60.017303
    [14] 肖盈, 张万荣, 金冬月, 陈亮, 王任卿, 谢红云. 能带工程对射频功率SiGe异质结双极晶体管热性能的改善. 物理学报, doi: 10.7498/aps.60.044402
    [15] 徐小波, 张鹤鸣, 胡辉勇. 薄膜SOI上SiGe HBT集电结耗尽电荷和电容改进模型. 物理学报, doi: 10.7498/aps.60.118501
    [16] 徐小波, 张鹤鸣, 胡辉勇, 许立军, 马建立. SOI部分耗尽SiGe HBT集电结空间电荷区模型. 物理学报, doi: 10.7498/aps.60.078502
    [17] 蔡明辉, 韩建伟, 李小银, 李宏伟, 张振力. 临近空间大气中子环境的仿真研究. 物理学报, doi: 10.7498/aps.58.6659
    [18] 胡辉勇, 张鹤鸣, 吕 懿, 戴显英, 侯 慧, 区健锋, 王 伟, 王喜嫒. SiGe HBT大信号等效电路模型. 物理学报, doi: 10.7498/aps.55.403
    [19] 吕 懿, 张鹤鸣, 戴显英, 胡辉勇, 舒 斌. SiGe HBT势垒电容模型. 物理学报, doi: 10.7498/aps.53.3239
    [20] 贺朝会, 耿斌, 杨海亮, 陈晓华, 王燕萍, 李国政. 浮栅ROM器件的辐射效应实验研究. 物理学报, doi: 10.7498/aps.52.180
计量
  • 文章访问数:  152
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-04-28

/

返回文章
返回