搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiGe BiCMOS低噪声放大器激光单粒子效应研究

李培 董志勇 郭红霞 张凤祁 郭亚鑫 彭治钢 贺朝会

引用本文:
Citation:

SiGe BiCMOS低噪声放大器激光单粒子效应研究

李培, 董志勇, 郭红霞, 张凤祁, 郭亚鑫, 彭治钢, 贺朝会

Investigation of laser-induced single event effect on SiGe BiCMOS low noise amplifiers

Li Pei, Dong Zhi-Yong, Guo Hong-Xia, Zhang Feng-Qi, Guo Ya-Xin, Peng Zhi-Gang, He Chao-Hui
PDF
HTML
导出引用
  • 随着CMOS工艺的日益成熟和SiGe外延技术水平的不断提高, SiGe BiCMOS低噪声放大器(LNA)广泛应用于空间射频收发系统的第一级模块. SiGe HBT作为SiGe BiCMOS LNA的核心器件, 天然具有优异的低温特性、抗总剂量效应和抗位移损伤效应的能力, 然而, 其瞬态电荷收集引起的空间单粒子效应是制约其空间应用的瓶颈问题. 本文基于SiGe BiCMOS工艺低噪声放大器开展了单粒子效应激光微束实验, 并定位了激光单粒子效应敏感区域. 实验结果表明, SiGe HBT瞬态电荷收集是引起 SiGe BiCMOS LNA单粒子效应的主要原因. TCAD模拟表明, 离子在CMOS区域入射时, 电离径迹会越过深沟槽隔离结构, 进入SiGe HBT区域产生电子空穴对并引起瞬态电荷收集. ADS电路模拟分析表明, 单粒子脉冲瞬态电压在越过第1级与第2级之间的电容时, 瞬态电压峰值骤降, 这表明电容在传递单粒子效应产生的瞬态脉冲过程中起着重要作用. 本文实验和模拟工作为SiGe BiCMOS LNA单粒子效应抗辐射设计加固提供了技术支持.
    With the further development of the complementary metal-oxide-semiconductor (CMOS) technology and the silicon-germanium (SiGe) epitaxy technology, SiGe bipolar CMOS (BiCMOS) low noise amplifiers (LNAs) are widely used in the first level of radio frequency (RF) transceiver system in space. The core part of SiGe BiCMOS LNA is SiGe heterojunction bipolar transistor (SiGe HBT) which naturally possesses excellent temperature characteristic and favorable build-in total ionizing dose and displacement damage resistance without any radiation hardening. However, the single event effect caused by the transient charge collection is the bottleneck problem, restricting its application in space. In this work, laser microbeam experiments were carried out on a SiGe BiCMOS LNA in which the sensitive region of single event effect was located. The experimental results indicate that the transient charge collection of SiGe HBT is the main reason of the single event effect of SiGe BiCMOS LNA. TCAD simulations show that the ionization track caused by ion incident in CMOS region will cross the deep trench isolation (DTI) structure, generate electron-hole pairs in SiGe HBT region and cause transient charge collection. The circuit simulations by ADS show that the peak value of the transient voltage will drop sharply when the SEE pulse transient voltage crosses the capacitor between the first stage and the second stage, which indicates that the capacitor plays an important role in transmitting the transient pulses caused by single event effect. The experimental and simulation results in this work provide technical support for radiation hardening by design (RHBD) of the single event effect of SiGe BiCMOS LNA.
      通信作者: 贺朝会, hechaohui@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12005159)和陕西省高校科协青年人才托举计划(批准号: 20210501)资助的课题.
      Corresponding author: He Chao-Hui, hechaohui@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12005159) and the Association for Science and Technology Youth Talent Support Program of Shaanxi Province, China (Grant No. 20210501).
    [1]

    Chevalier P, Avenier G, Canderle E, Montagné A, Ribes G, Vu V T 2015 IEEE Bipolar/BiCMOS Circuits and Technology Meeting Boston, MA, October 26–28, 2015 p80

    [2]

    Chevalier P, Liebl W, Rücker H, Gauthier A, Manger D, Heinemann B, Avenier G, Böck J 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium San Diego, CA, October 15–17, 2018 p64

    [3]

    Rücker H, Heinemann B 2012 International SoC Design Conference Jeju Island, November 4–7, 2012 p266

    [4]

    Mai A, Kaynak M 2016 21st International Conference on Microwave, Radar and Wireless Communications Krakow, Poland, May 9–11, 2016 p1

    [5]

    Lie D Y C, Tsay J, Hall T, Nukala T, Lopez J, Li Y 2016 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications Austin, TX, January 24–27, 2016 p15

    [6]

    Pekarik J J, Adkisson J, Gray P, Liu Q, Camillo-Castillo R, Khater M, Jain V, Zetterlund B, Divergilio A, Tian X, Vallett A, Ellis-Monaghan J, Gross B J, Cheng P, Kaushal V, He Z, Lukaitis J, Newton K, Kerbaugh M, Cahoon N, Vera L, Zhao Y, Long J R, Valdes-Garcia A, Reynolds S, Lee W, Sadhu B, Harame D 2014 IEEE Bipolar/BiCMOS Circuits and Technology Meeting Coronado, CA, September 28– October 1, 2014 p92

    [7]

    Dunn J S, Ahlgren D C, Coolbaugh D D, Feilchenfeld N B, Freeman G, Greenberg D R, Groves R A, Guarin F J, Hammad Y, Joseph A J, Lanzerotti L D, St. Onge S A, Orner B A, Rieh J S, Stein K J, Voldman S H, Wang P C, Zierak M J, Subbanna S, Harame D L, Herman D A, Meyerson B S 2003 IBM J. Res. Dev. 47 101Google Scholar

    [8]

    Najafizadeh L, Sutton A K, Jun B, Cressler J D, Vo T, Momeni O, Mojarradi M, Ulaganathan C, Chen S, Blalock B J, Yao Y, Yu X, Dai F, Marshall P W, Marshall C J 2007 9th European Conference on Radiation and Its Effects on Components and Systems Deauville, France, September 10–14, 2007 p1

    [9]

    England T D 2011 M. S. Thesis (Atlanta: Georgia Institute of Technology

    [10]

    Sissons B, Mantooth A, Di J, Holmes J A, Francis A M 2015 IEEE Aerospace Conference Big Sky, MT, March 7–14, 2015 p1

    [11]

    Cressler J D 2006 Digest of Papers. 2006 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems San Diego, CA, January 18–20, 2006 p5

    [12]

    Weinreb S, Bardin J C, Mani H 2007 IEEE Trans. Microwave Theory Tech. 55 2306Google Scholar

    [13]

    Krithivasan R, Lu Y, Najafizadeh L, Zh C D, Cressler J D, Chen S, Ulaganathan C, Blalock B J 2006 Bipolar/BiCMOS Circuits and Technology Meeting Maastricht, Netherlands, October 8–10, 2006 p1

    [14]

    Pruvost S, Delcourt S, Telliez I, Laurens M, Bourzgui N E, Danneville F, Monroy A, Dambrine G 2005 IEEE Electr. Device Lett. 26 105Google Scholar

    [15]

    Chen D, Pellish J, Phan A, Kim H, Burns S, Albarian R, Holcombe B, Little B, Salzman J, Marshall P, LaBel K 2010 IEEE Radiation Effects Data Workshop Las Vegas, NV, July 20–23, 2010 p5

    [16]

    Cressler J D 2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual Phoenix AZ, April 15–19, 2007 p141

    [17]

    Fleetwood Z E, Kenyon E W, Lourenco N E, Jain S, Zhang E X, England T D, Cressler J D, Schrimpf R D, Fleetwood D M 2014 IEEE T. Device Mat. Re. 14 844Google Scholar

    [18]

    Hegde V N, Pradeep T M, Pushpa N, Praveen K C, Bhushan K G, Cressler J D, Prakash A P G 2018 IEEE T. Device Mat. Re. 18 592Google Scholar

    [19]

    Najafizadeh L, Vo T, Phillips S D, Cheng P, Wilcox E P, Cressler J D, Mojarradi M, Marshall P W 2008 IEEE Trans. Nucl. Sci. 55 3253Google Scholar

    [20]

    Metcalfe J, Dorfan D E, Grillo A A, Jones A, Martinez-McKinney F, Mekhedjian P, Mendoza M, Sadrozinski H F W, Saffier-Ewing G, Seiden A, Spencer E, Wilder M, Hackenburg R, Kierstead J, Rescia S, Cressler J D, Prakash G, Sutton A 2007 Nucl. Instrum. Methods Phys. Res. 579 833Google Scholar

    [21]

    Inanlou F, Lourenco N E, Fleetwood Z E, Song I, Howard D C, Cardoso A, Zeinolabedinzadeh S, Zhang E, Zhang C X, Paki-Amouzou P, Cressler J D 2014 IEEE Trans. Nucl. Sci. 61 3050Google Scholar

    [22]

    Cressler J D 2013 IEEE Trans. Nucl. Sci. 60 1992Google Scholar

    [23]

    Van Vonno N W, Lucas R, Thornberry D 1999 Fifth European Conference on Radiation and Its Effects on Components and Systems. RADECS 99 Fontevraud, France, September 13–17, 1999 p414

    [24]

    Song I, Cho M K, Oakley M A, Ildefonso A, Ju I, Buchner S P, McMorrow D, Paki P, Cressler J D 2017 IEEE Trans. Nucl. Sci. 64 1142Google Scholar

    [25]

    Lourenco N E, Phillips S D, England T D, Cardoso A S, Fleetwood Z E, Moen K A, McMorrow D, Warner J H, Buchner S P, Paki-Amouzou P, Pekarik J, Harame D, Raman A, Turowski M, Cressler J D 2013 IEEE Trans. Nucl. Sci. 60 4175Google Scholar

    [26]

    Song I, Jung S, Lourenco N E, Raghunathan U S, Fleetwood Z E, Zeinolabedinzadeh S, Gebremariam T B, Inanlou F, Roche N J H, Khachatrian A, McMorrow D, Buchner S P, Melinger J S, Warner J H, Paki-Amouzou P, Cressler J D 2014 IEEE Trans. Nucl. Sci. 61 3218Google Scholar

    [27]

    Lourenco N E, Ildefonso A, Tzintzarov G N, Fleetwood Z E, Motoki K, Paki P, Kaynak M, Cressler J D 2018 IEEE Trans. Nucl. Sci. 65 231Google Scholar

    [28]

    徐婉静, 朱坤峰, 杨永晖, 任芳, 黄东, 梁柳红, 张霞, 汪璐, 崔伟, 谭开洲, 钱呈 2016 微电子学 46 407Google Scholar

    Xu W J, Zhu K F, Yang Y H, Ren F, Huang D, Liang L H, Zhang X, Wang L, Cui W, Tan K Z, Qian C 2016 Microelectronics 46 407Google Scholar

    [29]

    Gan D, Hu C, Parker G E, Pao H H, Jolly G 2012 IEEE Trans. Electron Devices 59 590Google Scholar

    [30]

    钟怡 2014 硕士学位论文 (成都: 电子科技大学)

    Zhong Y 2014 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [31]

    Wei J N, He C H, Li P, Li Y H, Guo H X 2019 Chin. Phy. B 28 076106Google Scholar

    [32]

    Sun Y B, Fu J, Wang Y D, Zhou W, Liu Z H, Li X J, Shi Y L 2016 Microelectron. Reliab. 65 41Google Scholar

    [33]

    Krithivasan R, Niu G F, Cressler J D, Currie S M, Fritz K E, Reed R A, Marshall P W, Riggs P A, Randall B A, Gilbert B 2003 IEEE Trans. Nucl. Sci. 50 2126Google Scholar

    [34]

    张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟 2013 物理学报 62 048501Google Scholar

    Zhang J X, Guo H X, Guo Q, Wen L, Cui J W, Xi S B, Wang X, Deng W 2013 Acta Phys. Sin. 62 048501Google Scholar

    [35]

    Zhang J X, Guo H X, Wen L, Guo Q, Cui J W, Wang X, Deng W, Zheng Q W, Fan X, Xiao R 2014 J. Semicond. 35 60Google Scholar

    [36]

    李培, 贺朝会, 郭红霞, 张晋新, 魏佳男, 刘默寒 2022 太赫兹科学与电子信息学报 20 523Google Scholar

    Li P, He C H, Guo H X, Zhang J X, Wei J N, Liu M H 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 523Google Scholar

    [37]

    Wang Q H, Liu H X, Wang S L, Chen S P 2018 IEEE Trans. Nucl. Sci. 65 2250Google Scholar

    [38]

    张晋新, 贺朝会, 郭红霞, 唐杜, 熊涔, 李培, 王信 2014 物理学报 63 248503Google Scholar

    Zhang J X, He C H, Guo H X, Tang D, Xiong C, Li P, Wang X 2014 Acta Phys. Sin. 63 248503Google Scholar

    [39]

    Ball D R, Sheets C B, Xu L, Cao J, Wen S J, Fung R, Cazzaniga C, Kauppila J S, Massengill L W, Bhuva B L 2021 IEEE Trans. Nucl. Sci. 68 830Google Scholar

    [40]

    Guagliardo S, Wrobel F, Aguiar Y Q, Autran J L, Leroux P, Saigne F, Pouget V, Touboul A D 2019 19th European Conference on Radiation and Its Effects on Components and Systems Montpellier, France, September 16–20, 2019 p1

    [41]

    刘爽 2019 硕士学位论文 (西安: 西安电子科技大学)

    Liu S 2019 M. S. Thesis (Xi’an: Xidian University

    [42]

    Chongqing Acoustic-Optic-Electric Corp. 2022 XND1108IE Datasheet (Rev 0.3 Ed.) http://www.sisc.com.cn [2023-11-13

    [43]

    魏佳男 2017 硕士学位论文 (武汉: 湘潭大学)

    Wei J N 2017 M. S. Thesis (Wuhan: Xiangtan University

    [44]

    Appaswamy A, Phillips S, Cressler J D 2009 IEEE Electron. Device Lett. 30 511Google Scholar

    [45]

    赖凡, 胡刚毅 2013 微电子学 43 94

    Lai F, Hu G Y 2013 Microelectronics 43 94

    [46]

    王健安, 谢家志, 赖凡 2014 微电子学 44 225

    Wang J A, Xie J Z, Lai F 2014 Microelectronics 44 225

  • 图 1  TCAD建立的2D模型

    Fig. 1.  2D model by TCAD.

    图 2  SiGe HBT集电极瞬态电流 (a) 垂直与45°; (b) 5°—85°

    Fig. 2.  SiGe HBT transient collector currents: (a) Vertical and 45°; (b) 5°–85°.

    图 3  SiGe BiCMOS LNA仿真电路图

    Fig. 3.  Simulation schematic of SiGe BiCMOS LNA.

    图 4  S参数与噪声系数仿真结果 (a) S参数 ; (b)输出端噪声系数

    Fig. 4.  Simulated results of S-parameters and noise figure: (a) S-parameters; (b) noise figure of output.

    图 5  XND1108IE (a)概貌图; (b) S参数测试结果

    Fig. 5.  XND1108IE: (a) Micrograph; (b) measured S-parameters.

    图 6  评估板与原理图 (a) XND1108IE评估板; (b)评估板原理图

    Fig. 6.  Evaluation board and schematic: (a) Evaluation board of XND1108IE; (b) schematic of the evaluation board

    图 7  不同能量激光入射时RF_OUT端时域瞬态电流(a) DC条件; (b) AC条件

    Fig. 7.  RF_OUT time-domain transient currents with different laser energy: (a) DC conditions; (b) AC conditions.

    图 8  密集入射区域以及该区域瞬态电流峰值分布图

    Fig. 8.  Area of dense incidence and the distribution of transient current peaks in the dense incident area.

    图 9  激光能量相同时两种工作条件下峰值的比较

    Fig. 9.  Comparison of peak transient current under two operating conditions with the same laser energy.

    图 10  AC条件下激光能量较高时的瞬态电压随时间的变化

    Fig. 10.  Transient voltage with time at high laser energies under AC conditions.

    图 11  AC条件下不同能量激光入射时功率谱密度随频率的变化

    Fig. 11.  Variation of power spectral density with frequency of laser incident with different energies under AC conditions

  • [1]

    Chevalier P, Avenier G, Canderle E, Montagné A, Ribes G, Vu V T 2015 IEEE Bipolar/BiCMOS Circuits and Technology Meeting Boston, MA, October 26–28, 2015 p80

    [2]

    Chevalier P, Liebl W, Rücker H, Gauthier A, Manger D, Heinemann B, Avenier G, Böck J 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium San Diego, CA, October 15–17, 2018 p64

    [3]

    Rücker H, Heinemann B 2012 International SoC Design Conference Jeju Island, November 4–7, 2012 p266

    [4]

    Mai A, Kaynak M 2016 21st International Conference on Microwave, Radar and Wireless Communications Krakow, Poland, May 9–11, 2016 p1

    [5]

    Lie D Y C, Tsay J, Hall T, Nukala T, Lopez J, Li Y 2016 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications Austin, TX, January 24–27, 2016 p15

    [6]

    Pekarik J J, Adkisson J, Gray P, Liu Q, Camillo-Castillo R, Khater M, Jain V, Zetterlund B, Divergilio A, Tian X, Vallett A, Ellis-Monaghan J, Gross B J, Cheng P, Kaushal V, He Z, Lukaitis J, Newton K, Kerbaugh M, Cahoon N, Vera L, Zhao Y, Long J R, Valdes-Garcia A, Reynolds S, Lee W, Sadhu B, Harame D 2014 IEEE Bipolar/BiCMOS Circuits and Technology Meeting Coronado, CA, September 28– October 1, 2014 p92

    [7]

    Dunn J S, Ahlgren D C, Coolbaugh D D, Feilchenfeld N B, Freeman G, Greenberg D R, Groves R A, Guarin F J, Hammad Y, Joseph A J, Lanzerotti L D, St. Onge S A, Orner B A, Rieh J S, Stein K J, Voldman S H, Wang P C, Zierak M J, Subbanna S, Harame D L, Herman D A, Meyerson B S 2003 IBM J. Res. Dev. 47 101Google Scholar

    [8]

    Najafizadeh L, Sutton A K, Jun B, Cressler J D, Vo T, Momeni O, Mojarradi M, Ulaganathan C, Chen S, Blalock B J, Yao Y, Yu X, Dai F, Marshall P W, Marshall C J 2007 9th European Conference on Radiation and Its Effects on Components and Systems Deauville, France, September 10–14, 2007 p1

    [9]

    England T D 2011 M. S. Thesis (Atlanta: Georgia Institute of Technology

    [10]

    Sissons B, Mantooth A, Di J, Holmes J A, Francis A M 2015 IEEE Aerospace Conference Big Sky, MT, March 7–14, 2015 p1

    [11]

    Cressler J D 2006 Digest of Papers. 2006 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems San Diego, CA, January 18–20, 2006 p5

    [12]

    Weinreb S, Bardin J C, Mani H 2007 IEEE Trans. Microwave Theory Tech. 55 2306Google Scholar

    [13]

    Krithivasan R, Lu Y, Najafizadeh L, Zh C D, Cressler J D, Chen S, Ulaganathan C, Blalock B J 2006 Bipolar/BiCMOS Circuits and Technology Meeting Maastricht, Netherlands, October 8–10, 2006 p1

    [14]

    Pruvost S, Delcourt S, Telliez I, Laurens M, Bourzgui N E, Danneville F, Monroy A, Dambrine G 2005 IEEE Electr. Device Lett. 26 105Google Scholar

    [15]

    Chen D, Pellish J, Phan A, Kim H, Burns S, Albarian R, Holcombe B, Little B, Salzman J, Marshall P, LaBel K 2010 IEEE Radiation Effects Data Workshop Las Vegas, NV, July 20–23, 2010 p5

    [16]

    Cressler J D 2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual Phoenix AZ, April 15–19, 2007 p141

    [17]

    Fleetwood Z E, Kenyon E W, Lourenco N E, Jain S, Zhang E X, England T D, Cressler J D, Schrimpf R D, Fleetwood D M 2014 IEEE T. Device Mat. Re. 14 844Google Scholar

    [18]

    Hegde V N, Pradeep T M, Pushpa N, Praveen K C, Bhushan K G, Cressler J D, Prakash A P G 2018 IEEE T. Device Mat. Re. 18 592Google Scholar

    [19]

    Najafizadeh L, Vo T, Phillips S D, Cheng P, Wilcox E P, Cressler J D, Mojarradi M, Marshall P W 2008 IEEE Trans. Nucl. Sci. 55 3253Google Scholar

    [20]

    Metcalfe J, Dorfan D E, Grillo A A, Jones A, Martinez-McKinney F, Mekhedjian P, Mendoza M, Sadrozinski H F W, Saffier-Ewing G, Seiden A, Spencer E, Wilder M, Hackenburg R, Kierstead J, Rescia S, Cressler J D, Prakash G, Sutton A 2007 Nucl. Instrum. Methods Phys. Res. 579 833Google Scholar

    [21]

    Inanlou F, Lourenco N E, Fleetwood Z E, Song I, Howard D C, Cardoso A, Zeinolabedinzadeh S, Zhang E, Zhang C X, Paki-Amouzou P, Cressler J D 2014 IEEE Trans. Nucl. Sci. 61 3050Google Scholar

    [22]

    Cressler J D 2013 IEEE Trans. Nucl. Sci. 60 1992Google Scholar

    [23]

    Van Vonno N W, Lucas R, Thornberry D 1999 Fifth European Conference on Radiation and Its Effects on Components and Systems. RADECS 99 Fontevraud, France, September 13–17, 1999 p414

    [24]

    Song I, Cho M K, Oakley M A, Ildefonso A, Ju I, Buchner S P, McMorrow D, Paki P, Cressler J D 2017 IEEE Trans. Nucl. Sci. 64 1142Google Scholar

    [25]

    Lourenco N E, Phillips S D, England T D, Cardoso A S, Fleetwood Z E, Moen K A, McMorrow D, Warner J H, Buchner S P, Paki-Amouzou P, Pekarik J, Harame D, Raman A, Turowski M, Cressler J D 2013 IEEE Trans. Nucl. Sci. 60 4175Google Scholar

    [26]

    Song I, Jung S, Lourenco N E, Raghunathan U S, Fleetwood Z E, Zeinolabedinzadeh S, Gebremariam T B, Inanlou F, Roche N J H, Khachatrian A, McMorrow D, Buchner S P, Melinger J S, Warner J H, Paki-Amouzou P, Cressler J D 2014 IEEE Trans. Nucl. Sci. 61 3218Google Scholar

    [27]

    Lourenco N E, Ildefonso A, Tzintzarov G N, Fleetwood Z E, Motoki K, Paki P, Kaynak M, Cressler J D 2018 IEEE Trans. Nucl. Sci. 65 231Google Scholar

    [28]

    徐婉静, 朱坤峰, 杨永晖, 任芳, 黄东, 梁柳红, 张霞, 汪璐, 崔伟, 谭开洲, 钱呈 2016 微电子学 46 407Google Scholar

    Xu W J, Zhu K F, Yang Y H, Ren F, Huang D, Liang L H, Zhang X, Wang L, Cui W, Tan K Z, Qian C 2016 Microelectronics 46 407Google Scholar

    [29]

    Gan D, Hu C, Parker G E, Pao H H, Jolly G 2012 IEEE Trans. Electron Devices 59 590Google Scholar

    [30]

    钟怡 2014 硕士学位论文 (成都: 电子科技大学)

    Zhong Y 2014 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [31]

    Wei J N, He C H, Li P, Li Y H, Guo H X 2019 Chin. Phy. B 28 076106Google Scholar

    [32]

    Sun Y B, Fu J, Wang Y D, Zhou W, Liu Z H, Li X J, Shi Y L 2016 Microelectron. Reliab. 65 41Google Scholar

    [33]

    Krithivasan R, Niu G F, Cressler J D, Currie S M, Fritz K E, Reed R A, Marshall P W, Riggs P A, Randall B A, Gilbert B 2003 IEEE Trans. Nucl. Sci. 50 2126Google Scholar

    [34]

    张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟 2013 物理学报 62 048501Google Scholar

    Zhang J X, Guo H X, Guo Q, Wen L, Cui J W, Xi S B, Wang X, Deng W 2013 Acta Phys. Sin. 62 048501Google Scholar

    [35]

    Zhang J X, Guo H X, Wen L, Guo Q, Cui J W, Wang X, Deng W, Zheng Q W, Fan X, Xiao R 2014 J. Semicond. 35 60Google Scholar

    [36]

    李培, 贺朝会, 郭红霞, 张晋新, 魏佳男, 刘默寒 2022 太赫兹科学与电子信息学报 20 523Google Scholar

    Li P, He C H, Guo H X, Zhang J X, Wei J N, Liu M H 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 523Google Scholar

    [37]

    Wang Q H, Liu H X, Wang S L, Chen S P 2018 IEEE Trans. Nucl. Sci. 65 2250Google Scholar

    [38]

    张晋新, 贺朝会, 郭红霞, 唐杜, 熊涔, 李培, 王信 2014 物理学报 63 248503Google Scholar

    Zhang J X, He C H, Guo H X, Tang D, Xiong C, Li P, Wang X 2014 Acta Phys. Sin. 63 248503Google Scholar

    [39]

    Ball D R, Sheets C B, Xu L, Cao J, Wen S J, Fung R, Cazzaniga C, Kauppila J S, Massengill L W, Bhuva B L 2021 IEEE Trans. Nucl. Sci. 68 830Google Scholar

    [40]

    Guagliardo S, Wrobel F, Aguiar Y Q, Autran J L, Leroux P, Saigne F, Pouget V, Touboul A D 2019 19th European Conference on Radiation and Its Effects on Components and Systems Montpellier, France, September 16–20, 2019 p1

    [41]

    刘爽 2019 硕士学位论文 (西安: 西安电子科技大学)

    Liu S 2019 M. S. Thesis (Xi’an: Xidian University

    [42]

    Chongqing Acoustic-Optic-Electric Corp. 2022 XND1108IE Datasheet (Rev 0.3 Ed.) http://www.sisc.com.cn [2023-11-13

    [43]

    魏佳男 2017 硕士学位论文 (武汉: 湘潭大学)

    Wei J N 2017 M. S. Thesis (Wuhan: Xiangtan University

    [44]

    Appaswamy A, Phillips S, Cressler J D 2009 IEEE Electron. Device Lett. 30 511Google Scholar

    [45]

    赖凡, 胡刚毅 2013 微电子学 43 94

    Lai F, Hu G Y 2013 Microelectronics 43 94

    [46]

    王健安, 谢家志, 赖凡 2014 微电子学 44 225

    Wang J A, Xie J Z, Lai F 2014 Microelectronics 44 225

  • [1] 杨卫涛, 胡志良, 何欢, 莫莉华, 赵小红, 宋伍庆, 易天成, 梁天骄, 贺朝会, 李永宏, 王斌, 吴龙胜, 刘欢, 时光. 近存计算架构AI芯片中子单粒子效应. 物理学报, 2024, 73(13): 138502. doi: 10.7498/aps.73.20240430
    [2] 黄馨雨, 张晋新, 王信, 吕玲, 郭红霞, 冯娟, 闫允一, 王辉, 戚钧翔. 基于锗硅异质结双极晶体管的低噪声放大器及其反模结构的单粒子瞬态数值仿真研究. 物理学报, 2024, 73(12): 126103. doi: 10.7498/aps.73.20240307
    [3] 琚安安, 郭红霞, 张凤祁, 刘晔, 钟向丽, 欧阳晓平, 丁李利, 卢超, 张鸿, 冯亚辉. N阱电阻的单粒子效应仿真. 物理学报, 2023, 72(2): 026102. doi: 10.7498/aps.72.20220125
    [4] 傅婧, 蔡毓龙, 李豫东, 冯婕, 文林, 周东, 郭旗. 质子辐照下正照式和背照式图像传感器的单粒子瞬态效应. 物理学报, 2022, 71(5): 054206. doi: 10.7498/aps.71.20211838
    [5] 沈睿祥, 张鸿, 宋宏甲, 侯鹏飞, 李波, 廖敏, 郭红霞, 王金斌, 钟向丽. 全耗尽绝缘体上硅氧化铪基铁电场效应晶体管存储单元单粒子效应计算机模拟研究. 物理学报, 2022, 71(6): 068501. doi: 10.7498/aps.71.20211655
    [6] 韩金华, 覃英参, 郭刚, 张艳文. 一种二进制降能器设计方法. 物理学报, 2020, 69(3): 033401. doi: 10.7498/aps.69.20191514
    [7] 韩金华, 郭刚, 刘建成, 隋丽, 孔福全, 肖舒颜, 覃英参, 张艳文. 100 MeV质子双环双散射体扩束方案设计. 物理学报, 2019, 68(5): 054104. doi: 10.7498/aps.68.20181787
    [8] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 中国散裂中子源在大气中子单粒子效应研究中的应用评估. 物理学报, 2019, 68(5): 052901. doi: 10.7498/aps.68.20181843
    [9] 宋志军, 吕昭征, 董全, 冯军雅, 姬忠庆, 金勇, 吕力. 极低温散粒噪声测试系统及隧道结噪声测量. 物理学报, 2019, 68(7): 070702. doi: 10.7498/aps.68.20190114
    [10] 赵雯, 郭晓强, 陈伟, 邱孟通, 罗尹虹, 王忠明, 郭红霞. 质子与金属布线层核反应对微纳级静态随机存储器单粒子效应的影响分析. 物理学报, 2015, 64(17): 178501. doi: 10.7498/aps.64.178501
    [11] 李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新. 锗硅异质结双极晶体管单粒子效应加固设计与仿真. 物理学报, 2015, 64(11): 118502. doi: 10.7498/aps.64.118502
    [12] 肖尧, 郭红霞, 张凤祁, 赵雯, 王燕萍, 丁李利, 范雪, 罗尹虹, 张科营. 累积剂量影响静态随机存储器单粒子效应敏感性研究. 物理学报, 2014, 63(1): 018501. doi: 10.7498/aps.63.018501
    [13] 张晋新, 贺朝会, 郭红霞, 唐杜, 熊涔, 李培, 王信. 不同偏置影响锗硅异质结双极晶体管单粒子效应的三维数值仿真研究. 物理学报, 2014, 63(24): 248503. doi: 10.7498/aps.63.248503
    [14] 张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟. 重离子导致的锗硅异质结双极晶体管单粒子效应电荷收集三维数值模拟. 物理学报, 2013, 62(4): 048501. doi: 10.7498/aps.62.048501
    [15] 刘必慰, 陈建军, 陈书明, 池雅庆. 带有n+深阱的三阱CMOS工艺中寄生NPN双极效应及其对电荷共享的影响. 物理学报, 2012, 61(9): 096102. doi: 10.7498/aps.61.096102
    [16] 刘凡宇, 刘衡竹, 刘必慰, 梁斌, 陈建军. 90 nm CMOS工艺下p+深阱掺杂浓度对电荷共享的影响. 物理学报, 2011, 60(4): 046106. doi: 10.7498/aps.60.046106
    [17] 蔡明辉, 韩建伟, 李小银, 李宏伟, 张振力. 临近空间大气中子环境的仿真研究. 物理学报, 2009, 58(9): 6659-6664. doi: 10.7498/aps.58.6659
    [18] 张 喆, 鲁 欣, 郝作强, 张适昌, 张东东, 王兆华, 马媛媛, 严 萍, 张 杰. 飞秒激光引导闪电的模拟实验研究. 物理学报, 2007, 56(9): 5293-5297. doi: 10.7498/aps.56.5293
    [19] 贺朝会, 耿斌, 杨海亮, 陈晓华, 王燕萍, 李国政. 浮栅ROM器件的辐射效应实验研究. 物理学报, 2003, 52(1): 180-187. doi: 10.7498/aps.52.180
    [20] 秦光戎, 龚德纯, 胡岗, 温孝东. 随机共振的模拟实验. 物理学报, 1992, 41(3): 360-369. doi: 10.7498/aps.41.360
计量
  • 文章访问数:  2281
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-07
  • 修回日期:  2023-11-24
  • 上网日期:  2023-12-22
  • 刊出日期:  2024-02-20

/

返回文章
返回