-
铁电场效应晶体管具有非挥发性、低功耗、读写速度快等优异的存储性能, 是最有前景的新型半导体存储器件之一. 为促进铁电场效应晶体管在辐射环境中的应用, 本文利用计算机辅助设计软件对全耗尽绝缘体上硅氧化铪基铁电场效应晶体管存储单元的单粒子效应进行研究, 分析了重离子不同入射位置及角度和漏极偏置电压对存储单元相关特性的影响. 结果表明: 重离子入射位置改变不会使氧化铪铁电层中相应的极化状态发生反向, 但会影响存储单元输出电压瞬态变化, 最敏感区域靠近漏-体结区域; 随着重离子入射角度减小, 存储单元输出电压峰值增大, 读数据“0”时入射角度变化的影响更为明显; 存储单元输出电压峰值受漏极偏置电压调制, 读数据“1”时调制效应更为明显. 本工作为全耗尽绝缘体上硅氧化铪基铁电场效应晶体管存储单元抗单粒子效应加固设计提供理论依据和指导.Ferroelectric field-effect transistor (FeFET) memory is currently a popular non-volatile memory. It has many advantages such as nonvolatility, better scalability, energy-efficient switching with non-destructive read-out and anti-radiation. To promote the application of FeFET in radiation environments, the single-event transient effect in HfO2-based fully-depleted silicon-on-insulator (FDSOI) FeFET memory cell is studied by technology computer aided design (TCAD) numerical simulation. The effects of different incident positions and angles of heavy ions and the drain bias voltage on the characteristics of the memory cell are analyzed. The results show that the corresponding polarization state in the HfO2 ferroelectric layer will not reverse regardless of the change for the incident position of heavy ions, but the transient change of the output voltage for the memory cell will be affected. The most sensitive area is close to the drain-body junction area. Moreover, with the decrease of the ion incidence angle, the peak of output voltage for the memory cell increases. And the effect of the incident angle change is more obvious when reading data is “0” rather than “1”. The peak of output voltage for the memory cell is modulated by the drain bias voltage, and the modulation effect is more obvious when reading data is “1” rather than “0”. The above findings provide theoretical basis and guidance for the anti-single event design of the FDSOI FeFET memory cell.
-
Keywords:
- fully-depleted silicon-on-insulator /
- ferroelectric field-effect transistor /
- single-event effect /
- technology computer aided design
[1] Chen D, Kim H, Phan A, Wilcox E, LaBel K, Buchner S, Khachatrian A, Roche N 2014 IEEE Trans. Nucl. Sci. 61 3088Google Scholar
[2] 沈自才, 丁义刚 2015 抗辐射设计与辐射效应 (北京: 中国科学技术出版社) 第78页
Shen Z C, Ding Y G 2015 Anti-Radiation Design and Radiation Effect (Beijing: China Science and Technology Press) p78 (in Chinese)
[3] 高占占, 侯鹏飞, 郭红霞, 李波, 宋宏甲, 王金斌, 钟向丽 2019 物理学报 68 048501Google Scholar
Gao Z Z, Hou P F, Guo H X, Li B, Song H J, Wang J B, Zhong X L 2019 Acta Phys. Sin. 68 048501Google Scholar
[4] Carter R, Mazurier J, Pirro L, et al. 2016 IEEE International Electron Devices Meeting San Francisco, USA, December 3–7, 2016 p2.2.1
[5] Mikolajick T, Schroeder U, Lomenzo P D, Breyer E T, Mulaosmanovic H, Hoffmann M, Mittmann T, Mehmood F, Max B, Slesazeck S 2019 IEEE International Electron Devices Meeting San Francisco, USA, December 7–11, 2019 p15.5.1
[6] Beyer S, Dünkel S, Trentzsch M, et al. 2020 IEEE International Memory Workshop Dresden, Germany, May 17–20, 2020 p1
[7] Müller J, Böscke T S, Bräuhaus D, Schröder U, Böttger U, Sundqvist J, Kücher P, Mikolajick T, Frey L 2011 Appl. Phys. Lett. 99 102901Google Scholar
[8] Zeng B J, Liao M, Liao J J, Xiao W W, Peng Q X, Zheng S Z, Zhou Y C 2019 IEEE Electron Device Lett. 40 710Google Scholar
[9] Breyer E T, Mulaosmanovic H, Trommer J, Melde T, Dünkel S, Trentzsch M, Beyer S, Slesazeck S, Mikolajick T 2020 IEEE J. Electron Devices Soc. 8 748Google Scholar
[10] O'Sullivan B J, Putcha V, Izmailov R, Afanas'ev V, Simoen E, Jung T, Higashi Y, Degraeve R, Truijen B, Kaczer B, Ronchi N, McMitchell S, Banerjee K, Clima S, Breuil L, Van den Bosch G, Linten D, Van Houdt J 2020 Appl. Phys. Lett. 117 203504Google Scholar
[11] Wu Y C, Jhan Y R 2018 3D TCAD Simulation for CMOS Nanoeletronic Devices (Singapore: Springer) pp1–17
[12] 黎华梅, 侯鹏飞, 王金斌, 宋宏甲, 钟向丽 2020 物理学报 69 098502Google Scholar
Li H M, Hou P F, Wang J B, Song H J, Zhong X L 2020 Acta Phys. Sin. 69 098502Google Scholar
[13] Xu J Y, Chen S M, Song R Q, Wu Z Y, Chen J J 2018 Nucl. Sci. Tech. 29 49Google Scholar
[14] Wang L F, Liu H N, Chen L K, Zhou Y L, Zhang H Y, Gao J T, Zhao F Z, Luo J J, Yu F, Han Z S 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology Hangzhou, China, October 25–28, 2016 p1506
[15] Trentzsch M, Flachowsky S, Richter R, et al. 2016 IEEE International Electron Devices Meeting San Francisco, USA, December 3–7, 2016 p11.5.1
[16] Planes N, Weber O, Barral V, et al. 2012 Symposium on VLSI Technology Honolulu, USA, June 12–14, 2012 p133
[17] Breyer E T, Mulaosmanovic H, Mikolajick T, Slesazeck S 2017 IEEE International Electron Devices Meeting San Francisco, USA, December 2–6, 2017 p28.5.1
[18] Tian G L, Bi J S, Xu G B, Xi K, Yang X, Yin X Q, Xu Q X, Wang W W 2020 Semicond. Sci. Tech. 35 105010Google Scholar
[19] Hyuk Park M, Joon Kim H, Jin Kim Y, Lee W, Moon T, Seong Hwang C 2013 Appl. Phys. Lett. 102 242905Google Scholar
[20] 曾斌建 2019 博士学位论文 (湘潭: 湘潭大学)
Zeng B J 2019 Ph. D. Dissertation (Xiangtan: Xiangtan University) (in Chinese)
[21] 毕津顺, 刘刚, 罗家俊, 韩郑生 2013 物理学报 62 208501Google Scholar
Bi S J, Liu G, Luo J J, Han Z S 2013 Acta Phys. Sin. 62 208501Google Scholar
[22] Bartic A T, Wouters D J, Maes H E, Rickes J T, Waser R M 2001 J. Appl. Phys. 89 3420Google Scholar
[23] Tu L Q, Cao R R, Wang X D, Chen Y, Wu S Q, Wang F, Wang Z, Shen H, Lin T, Zhou P, Meng X J, Hu W D, Liu Q, Wang J L, Liu M, Chu J H 2020 Nat. Commun. 11 101Google Scholar
[24] Synopsys, Inc. https://www.synopsys.com/silicon/tcad.html [2021-07-10]
[25] Nsengiyumva P, Massengill L W, Alles M L, Bhuva B L, Ball D R, Kauppila J S, Haeffner T D, Holman W T, Reed R A 2017 IEEE Trans. Nucl. Sci. 64 441Google Scholar
[26] Nsengiyumva P, Massengill L W, Kauppila J S, Maharrey J A, Harrington R C, Haeffner T D, Ball D R, Alles M L, Bhuva B L, Holman W T, Zhang E X, Rowe J D, Sternberg A L 2018 IEEE Trans Nucl. Sci. 65 223Google Scholar
[27] Wang Q Q, Liu H X, Wang S L, Chen S P 2018 IEEE Trans. Nucl. Sci. 65 2250Google Scholar
[28] Space Environment Effects Laboratory, https://www.seelab.ac.cn/ [2021-11-15]
[29] Yan S A, Tang M H, Zhao W, Guo H X, Zhang W L, Xu X Y, Wang X D, Ding H, Chen J W, Li Z, Zhou Y C 2014 Chin. Phys. B 23 046104Google Scholar
[30] 卓青青, 刘红侠, 郝跃 2012 物理学报 61 220702Google Scholar
Zhuo Q Q, Liu H X, Hao Y 2012 Acta Phys. Sin. 61 220702Google Scholar
-
图 10 不同角度重离子入射2 ps后, 在距离沟道底部5 nm处的水平切割线静电势和电子迁移率的变化 (a)存储单元读数据“0”时静电势的变化; (b)存储单元读数据“1”时电子迁移率的变化
Fig. 10. Variations of electrostatic potential and electron mobility at the horizontal cutting line 5 nm away from the bottom of the channel after heavy ions are incident at different angles for 2 ps: (a) Electrostatic potential variation when the memory cell reading “0”; (b) electron mobility variation when the memory cell reading “1”.
图 12 重离子击中存储单元2 ps后, 距离沟道底部5 nm, 沿x轴切割线的一维电场分布 (a)读数据“1”时; (b)读数据“0”时
Fig. 12. One-dimensional electric field distribution along the x-axis cutting line which is 5 nm away from the bottom of the channel after 2 ps for the heavy ions incident in the storage cell: (a) The memory cell reading “1”; (b) The memory cell reading “0”.
表 1 HfO2 基FDSOI FeFET工艺参数
Table 1. Process parameters of HfO2-based FDSOI FeFET.
物理参数 数值 TiN厚度/nm 1 HfO2铁电层厚度/nm 10 栅氧厚度/nm 1 顶层硅膜厚度/nm 7 氧化物掩埋层厚度/nm 25 沟道长度/nm 30 隔离层长度/nm 10 源漏区高度/ nm 18.5 HfO2铁电薄膜介电常数 30 剩余极化Pr/(µC·cm–2) 17 矫顽场Ec/(MV·cm–1) 1 -
[1] Chen D, Kim H, Phan A, Wilcox E, LaBel K, Buchner S, Khachatrian A, Roche N 2014 IEEE Trans. Nucl. Sci. 61 3088Google Scholar
[2] 沈自才, 丁义刚 2015 抗辐射设计与辐射效应 (北京: 中国科学技术出版社) 第78页
Shen Z C, Ding Y G 2015 Anti-Radiation Design and Radiation Effect (Beijing: China Science and Technology Press) p78 (in Chinese)
[3] 高占占, 侯鹏飞, 郭红霞, 李波, 宋宏甲, 王金斌, 钟向丽 2019 物理学报 68 048501Google Scholar
Gao Z Z, Hou P F, Guo H X, Li B, Song H J, Wang J B, Zhong X L 2019 Acta Phys. Sin. 68 048501Google Scholar
[4] Carter R, Mazurier J, Pirro L, et al. 2016 IEEE International Electron Devices Meeting San Francisco, USA, December 3–7, 2016 p2.2.1
[5] Mikolajick T, Schroeder U, Lomenzo P D, Breyer E T, Mulaosmanovic H, Hoffmann M, Mittmann T, Mehmood F, Max B, Slesazeck S 2019 IEEE International Electron Devices Meeting San Francisco, USA, December 7–11, 2019 p15.5.1
[6] Beyer S, Dünkel S, Trentzsch M, et al. 2020 IEEE International Memory Workshop Dresden, Germany, May 17–20, 2020 p1
[7] Müller J, Böscke T S, Bräuhaus D, Schröder U, Böttger U, Sundqvist J, Kücher P, Mikolajick T, Frey L 2011 Appl. Phys. Lett. 99 102901Google Scholar
[8] Zeng B J, Liao M, Liao J J, Xiao W W, Peng Q X, Zheng S Z, Zhou Y C 2019 IEEE Electron Device Lett. 40 710Google Scholar
[9] Breyer E T, Mulaosmanovic H, Trommer J, Melde T, Dünkel S, Trentzsch M, Beyer S, Slesazeck S, Mikolajick T 2020 IEEE J. Electron Devices Soc. 8 748Google Scholar
[10] O'Sullivan B J, Putcha V, Izmailov R, Afanas'ev V, Simoen E, Jung T, Higashi Y, Degraeve R, Truijen B, Kaczer B, Ronchi N, McMitchell S, Banerjee K, Clima S, Breuil L, Van den Bosch G, Linten D, Van Houdt J 2020 Appl. Phys. Lett. 117 203504Google Scholar
[11] Wu Y C, Jhan Y R 2018 3D TCAD Simulation for CMOS Nanoeletronic Devices (Singapore: Springer) pp1–17
[12] 黎华梅, 侯鹏飞, 王金斌, 宋宏甲, 钟向丽 2020 物理学报 69 098502Google Scholar
Li H M, Hou P F, Wang J B, Song H J, Zhong X L 2020 Acta Phys. Sin. 69 098502Google Scholar
[13] Xu J Y, Chen S M, Song R Q, Wu Z Y, Chen J J 2018 Nucl. Sci. Tech. 29 49Google Scholar
[14] Wang L F, Liu H N, Chen L K, Zhou Y L, Zhang H Y, Gao J T, Zhao F Z, Luo J J, Yu F, Han Z S 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology Hangzhou, China, October 25–28, 2016 p1506
[15] Trentzsch M, Flachowsky S, Richter R, et al. 2016 IEEE International Electron Devices Meeting San Francisco, USA, December 3–7, 2016 p11.5.1
[16] Planes N, Weber O, Barral V, et al. 2012 Symposium on VLSI Technology Honolulu, USA, June 12–14, 2012 p133
[17] Breyer E T, Mulaosmanovic H, Mikolajick T, Slesazeck S 2017 IEEE International Electron Devices Meeting San Francisco, USA, December 2–6, 2017 p28.5.1
[18] Tian G L, Bi J S, Xu G B, Xi K, Yang X, Yin X Q, Xu Q X, Wang W W 2020 Semicond. Sci. Tech. 35 105010Google Scholar
[19] Hyuk Park M, Joon Kim H, Jin Kim Y, Lee W, Moon T, Seong Hwang C 2013 Appl. Phys. Lett. 102 242905Google Scholar
[20] 曾斌建 2019 博士学位论文 (湘潭: 湘潭大学)
Zeng B J 2019 Ph. D. Dissertation (Xiangtan: Xiangtan University) (in Chinese)
[21] 毕津顺, 刘刚, 罗家俊, 韩郑生 2013 物理学报 62 208501Google Scholar
Bi S J, Liu G, Luo J J, Han Z S 2013 Acta Phys. Sin. 62 208501Google Scholar
[22] Bartic A T, Wouters D J, Maes H E, Rickes J T, Waser R M 2001 J. Appl. Phys. 89 3420Google Scholar
[23] Tu L Q, Cao R R, Wang X D, Chen Y, Wu S Q, Wang F, Wang Z, Shen H, Lin T, Zhou P, Meng X J, Hu W D, Liu Q, Wang J L, Liu M, Chu J H 2020 Nat. Commun. 11 101Google Scholar
[24] Synopsys, Inc. https://www.synopsys.com/silicon/tcad.html [2021-07-10]
[25] Nsengiyumva P, Massengill L W, Alles M L, Bhuva B L, Ball D R, Kauppila J S, Haeffner T D, Holman W T, Reed R A 2017 IEEE Trans. Nucl. Sci. 64 441Google Scholar
[26] Nsengiyumva P, Massengill L W, Kauppila J S, Maharrey J A, Harrington R C, Haeffner T D, Ball D R, Alles M L, Bhuva B L, Holman W T, Zhang E X, Rowe J D, Sternberg A L 2018 IEEE Trans Nucl. Sci. 65 223Google Scholar
[27] Wang Q Q, Liu H X, Wang S L, Chen S P 2018 IEEE Trans. Nucl. Sci. 65 2250Google Scholar
[28] Space Environment Effects Laboratory, https://www.seelab.ac.cn/ [2021-11-15]
[29] Yan S A, Tang M H, Zhao W, Guo H X, Zhang W L, Xu X Y, Wang X D, Ding H, Chen J W, Li Z, Zhou Y C 2014 Chin. Phys. B 23 046104Google Scholar
[30] 卓青青, 刘红侠, 郝跃 2012 物理学报 61 220702Google Scholar
Zhuo Q Q, Liu H X, Hao Y 2012 Acta Phys. Sin. 61 220702Google Scholar
计量
- 文章访问数: 5491
- PDF下载量: 129
- 被引次数: 0