-
锂是熔盐堆燃料载体盐的主要材料之一, 其中子核反应截面数据是熔盐堆芯中子物理设计及堆芯长期安全运行中的重要基础数据. 本工作基于中国散裂中子源反角白光中子束线(CSNS Back-n)飞行时间谱仪, 利用中子全截面测量谱仪(NTOX), 采用透射法测量了天然锂中子全截面. 实验中, 中子飞行距离约为76.0 m, 采用15.0 mm和8.00 mm两种厚度的天然锂金属样品, 在0.4 eV—20 MeV中子能量范围内测得了统计计数较好的中子全截面. 特别是在keV及以下能区增补了实验数据, 为锂的核数据评价工作提供了更加丰富和可靠的实验数据. 在此基础上, 采用1/v律和R矩阵理论对MeV以下能区的新测量数据进行了理论分析, 获得了7Li和6Li在260 keV能量附近的中子共振参数.Lithium is one of the main materials of fuel carrier salt in molten salt reactors. Its neutron cross section provides an important basic datum for physical design of molten salt reactor core and for evaluating the safety of the core during operation. The total neutron cross sections of natural lithium samples with thickness values of 8.00 mm and 15.0 mm are measured, respectively, in an energy range from 0.4 eV to 20 MeV by using a neutron total cross section spectrometer (NTOX) with the transmission method at the Back-n white neutron source of China Spallation Neutron Source (CSNS Back-n) with a 76.0 m time-of-flight path. High quality experimental data are obtained, especially in the energy region of keV and below, which supply a significative supplement of the data, thereby providing more abundant and reliable experimental data for nuclear data evaluation of lithium. Additionally, a theoretical analysis is carried out under the guidance of 1/v law and the multilevel R-matrix theory. And the resonance parameters of n+6,7Li reaction around the energy of 260 keV are extracted from the measured data.
[1] 江绵恒, 徐洪杰, 戴志敏 2012 中国科学院院刊 27 366Google Scholar
Jiang M H, Xu H J, Dai Z M 2012 Bull. Chin. Acad. Sci. 27 366Google Scholar
[2] Egorov M V 2019 Nucl. Phys. A 986 175Google Scholar
[3] 胡继峰, 余呈刚, 邹春燕, 蔡翔舟, 韩建龙, 陈金根 2017 原子能科学技术 51 2013Google Scholar
Hu J F, Yu C G, Zou C Y, Cai X Z, Han J L, Chen J G 2017 J. Atom. Ener. 51 2013Google Scholar
[4] 胡继峰, 王小鹤, 李文江, 李晓晓, 韩建龙 2019 核技术 42 030601Google Scholar
Hu J F, Wang X H, Li W J, Li X X, Han J L 2019 J. Nucl. Tech. 42 030601Google Scholar
[5] Otuka N, Dupont E, Semkova V, Pritychenko B, Blokhin A I, Aikawae M, Babykinaf S, Bossantb M, Cheng G, Dunaevah S, Forresta R A, Fukahorii T, Furutachie N, Ganesanj S, Geg Z, Gritzayk O O, Hermanc M, Hlavačl S, Zhuang Y 2014 Nucl. Data Sheets 120 272Google Scholar
[6] Dunning J R, Pegram G B, Fink G A, Mitchell D P 1935 Phys. Rev. 48 265Google Scholar
[7] Havens W W, Rainwater J 1946 Phys. Rev. 70 154Google Scholar
[8] Hibdon C T 1950 Phys. Rev. 79 747Google Scholar
[9] Jing H T, Tang J Y, Tang H Q, Xia H H, Liang T J, Zhou Z Y, Zhong Q P, Ruan X C 2010 Nucl. Instr. Meth. A 621 91Google Scholar
[10] Chen H S, Wang X L 2016 Nat. Mater. 15 689Google Scholar
[11] An Q, Bai H Y, Bao J, et al. 2017 J. Instr. 12 07022
[12] 唐靖宇, 敬罕涛, 夏海鸿, 唐洪庆, 张闯, 周祖英, 阮锡超, 张奇玮, 杨征 2013 原子能科学技术 47 1089Google Scholar
Tang J Y, Jing H T, Xia H H, Tang H Q, Zhang C, Zhou Z Y, Ruan X C, Zhang Q W, Yang Z 2013 J. Atom. Ener. 47 1089Google Scholar
[13] Liu X Y, Yang Y W, Liu R, et al. 2019 Nucl. Sci. Tech. 30 139Google Scholar
[14] 鲍杰, 陈永浩, 张显彭等 2019 物理学报 68 080101Google Scholar
Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar
[15] Yi H, Wang T F, Li Y, et al. 2020 J. Instr. 15 03026
[16] Jiang B, Han L J, Jiang W, Hu J F, Wang X H, Chen J G, Cai X Z 2021 Nucl. Instr. Meth. A 1013 165677Google Scholar
[17] Reich C W, Moore M S 1958 Phys. Rev. 111 929Google Scholar
[18] Trkov A, Griffin P J, Simakov S P, et al. 2020 Nucl. Data Sheets 163 1Google Scholar
[19] Brown D A, Chadwick M B, Capote R, et al. 2018 Nucl. Data Sheets 148 1Google Scholar
[20] Stelson P H, Preston W M 1951 Phys. Rev. 84 162Google Scholar
[21] Johnson C H, Willard H B, Bair J K 1954 Phys. Rev. 96 985Google Scholar
[22] 姜炳, 王小鹤, 韩建龙, 胡继峰, 陈金根, 蔡翔舟 2021 原子能科学技术 55 8Google Scholar
Jiang B, Wang X H, Han J L, Hu J F, Chen J G, Cai X Z 2021 J. Atom. Ener. 55 8Google Scholar
[23] Ajzenberg-Selove F, Lauritsen T 1974 Nucl. Phys. A 227 1Google Scholar
[24] Tilley D R, Kelley J H, Godwin J L, Millener D J, Purcell J E, Sheu C G, Weller H R 2004 Nucl. Phys. A 754 155
[25] Koning A J, Rochman D, Sublet J C, Dzysiuk N, Fleming M, van der Marck S 2019 Nucl. Data Sheets 155 1Google Scholar
[26] Willard H B, Bair J K, Kington J D, Cohn H O 1956 Phys. Rev. 101 765Google Scholar
[27] Tilley D R, Cheves C M, Godwin J L, Hale G M, Hofmann H M, Kelley J H, Sheu C G, Weller H R 2002 Nucl. Phys. A 708 3Google Scholar
-
表 1 裂变层第1层235U共振峰高斯拟合峰值结果
Table 1. Parameters of the Gaussian fit of the resonance peaks of the first 235U.
共振峰/eV 裂变峰中心值对应的
信号输出时间 $ T_{\rm ff}^* $/nsTOF/ns 8.77 1892730 ± 34 1893569 12.40 1592672 ± 56 1593511 19.3 1276160 ± 46 1276999 注: *对应的误差为高斯拟合的误差, 即标准差. 表 2 Li同位素中子核反应共振参数
Table 2. Resonance parameters of neutron reaction for 7Li and 6Li.
-
[1] 江绵恒, 徐洪杰, 戴志敏 2012 中国科学院院刊 27 366Google Scholar
Jiang M H, Xu H J, Dai Z M 2012 Bull. Chin. Acad. Sci. 27 366Google Scholar
[2] Egorov M V 2019 Nucl. Phys. A 986 175Google Scholar
[3] 胡继峰, 余呈刚, 邹春燕, 蔡翔舟, 韩建龙, 陈金根 2017 原子能科学技术 51 2013Google Scholar
Hu J F, Yu C G, Zou C Y, Cai X Z, Han J L, Chen J G 2017 J. Atom. Ener. 51 2013Google Scholar
[4] 胡继峰, 王小鹤, 李文江, 李晓晓, 韩建龙 2019 核技术 42 030601Google Scholar
Hu J F, Wang X H, Li W J, Li X X, Han J L 2019 J. Nucl. Tech. 42 030601Google Scholar
[5] Otuka N, Dupont E, Semkova V, Pritychenko B, Blokhin A I, Aikawae M, Babykinaf S, Bossantb M, Cheng G, Dunaevah S, Forresta R A, Fukahorii T, Furutachie N, Ganesanj S, Geg Z, Gritzayk O O, Hermanc M, Hlavačl S, Zhuang Y 2014 Nucl. Data Sheets 120 272Google Scholar
[6] Dunning J R, Pegram G B, Fink G A, Mitchell D P 1935 Phys. Rev. 48 265Google Scholar
[7] Havens W W, Rainwater J 1946 Phys. Rev. 70 154Google Scholar
[8] Hibdon C T 1950 Phys. Rev. 79 747Google Scholar
[9] Jing H T, Tang J Y, Tang H Q, Xia H H, Liang T J, Zhou Z Y, Zhong Q P, Ruan X C 2010 Nucl. Instr. Meth. A 621 91Google Scholar
[10] Chen H S, Wang X L 2016 Nat. Mater. 15 689Google Scholar
[11] An Q, Bai H Y, Bao J, et al. 2017 J. Instr. 12 07022
[12] 唐靖宇, 敬罕涛, 夏海鸿, 唐洪庆, 张闯, 周祖英, 阮锡超, 张奇玮, 杨征 2013 原子能科学技术 47 1089Google Scholar
Tang J Y, Jing H T, Xia H H, Tang H Q, Zhang C, Zhou Z Y, Ruan X C, Zhang Q W, Yang Z 2013 J. Atom. Ener. 47 1089Google Scholar
[13] Liu X Y, Yang Y W, Liu R, et al. 2019 Nucl. Sci. Tech. 30 139Google Scholar
[14] 鲍杰, 陈永浩, 张显彭等 2019 物理学报 68 080101Google Scholar
Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar
[15] Yi H, Wang T F, Li Y, et al. 2020 J. Instr. 15 03026
[16] Jiang B, Han L J, Jiang W, Hu J F, Wang X H, Chen J G, Cai X Z 2021 Nucl. Instr. Meth. A 1013 165677Google Scholar
[17] Reich C W, Moore M S 1958 Phys. Rev. 111 929Google Scholar
[18] Trkov A, Griffin P J, Simakov S P, et al. 2020 Nucl. Data Sheets 163 1Google Scholar
[19] Brown D A, Chadwick M B, Capote R, et al. 2018 Nucl. Data Sheets 148 1Google Scholar
[20] Stelson P H, Preston W M 1951 Phys. Rev. 84 162Google Scholar
[21] Johnson C H, Willard H B, Bair J K 1954 Phys. Rev. 96 985Google Scholar
[22] 姜炳, 王小鹤, 韩建龙, 胡继峰, 陈金根, 蔡翔舟 2021 原子能科学技术 55 8Google Scholar
Jiang B, Wang X H, Han J L, Hu J F, Chen J G, Cai X Z 2021 J. Atom. Ener. 55 8Google Scholar
[23] Ajzenberg-Selove F, Lauritsen T 1974 Nucl. Phys. A 227 1Google Scholar
[24] Tilley D R, Kelley J H, Godwin J L, Millener D J, Purcell J E, Sheu C G, Weller H R 2004 Nucl. Phys. A 754 155
[25] Koning A J, Rochman D, Sublet J C, Dzysiuk N, Fleming M, van der Marck S 2019 Nucl. Data Sheets 155 1Google Scholar
[26] Willard H B, Bair J K, Kington J D, Cohn H O 1956 Phys. Rev. 101 765Google Scholar
[27] Tilley D R, Cheves C M, Godwin J L, Hale G M, Hofmann H M, Kelley J H, Sheu C G, Weller H R 2002 Nucl. Phys. A 708 3Google Scholar
计量
- 文章访问数: 5027
- PDF下载量: 212
- 被引次数: 0