搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

从聚酰亚胺单分子链电荷陷阱特性的改变探讨体材料的沿面放电现象

李亚莎 夏宇 刘世冲 瞿聪

引用本文:
Citation:

从聚酰亚胺单分子链电荷陷阱特性的改变探讨体材料的沿面放电现象

李亚莎, 夏宇, 刘世冲, 瞿聪

Surface discharge of bulk materials investigated from change of charge trap characteristics of polyimide single molecular chain

Li Ya-Sha, Xia Yu, Liu Shi-Chong, Qu Cong
PDF
HTML
导出引用
  • 沿面放电是破坏绝缘系统性能的原因之一. 聚酰亚胺常用于高频电力设备的气-固绝缘中, 为此利用密度泛函理论, 从原子分子层面探讨了在外电场下聚酰亚胺及其受极性基团OH影响后的单分子链结构、能级与态密度、静电势、激发态等微观参数对陷阱形成以及沿面放电的影响. 结果表明, 外电场下, 聚酰亚胺分子结构卷曲, 偶极矩增加, 易于积聚电荷形成空间电荷中心, 尤属引入极性基团OH后变化较明显; 聚酰亚胺分子中, 苯环区域形成空穴陷阱, 酰亚胺环区域形成电子陷阱, 且电子陷阱能级的数量较多, 其中空间电荷陷阱深度随外电场的增加逐渐变深; 聚酰亚胺分子在引入极性基团OH后激发能降低, 使得分子内部的电子变得容易被激发; 电子与空穴的空间分离度随电场增加而降低, 利于空穴与电子的复合而发出光子.
    Surface discharge is one of the reasons for insulation failure. Polyimide (PI) is used in gas-solid insulation of high-frequency electric power equipment. Therefore, based on density functional theory, the effects of single molecular chain structure, energy level, density of states, electrostatic potential, excited state and other micro parameters under external electric field on trap formation and surface discharge of both PI and polar- group- OHaffected PI are discussed from the atomic and molecular level. The results show that the structure of PI is crimped and the dipole moment increases under external electric field, which is easy to accumulate charges to form space charge center, especially after the introduction of polar group OH. In the PI molecules, hole traps are formed in the benzene ring region, and electron traps are formed in the imide ring region. The number of electron trap energy levels is large, in which the space charge trap depth gradually deepens with the increase of external electric field. After the introduction of polar group OH, the excitation energy of PI molecules decreases, which makes the electrons inside the molecules excited easily. The spatial separation of electrons and holes decreases with the increase of electric field, which is conducive to the recombination of holes and electrons to emit photons.
      通信作者: 夏宇, 1106283537@qq.com
    • 基金项目: 国家自然科学基金(批准号: 51577105)资助的课题.
      Corresponding author: Xia Yu, 1106283537@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51577105).
    [1]

    黄旭炜, 刘涛, 舒想, 李庆民, 王忠东 2020 高电压技术 46 215Google Scholar

    Huang X W, Liu T, Shu X, Li Q M, Wang Z D 2020 High Voltage Eng. 46 215Google Scholar

    [2]

    胡一卓, 董明, 谢佳成, 何文林, 汪可, 李金忠 2020 电网技术 44 1276Google Scholar

    Hu Y Z, Dong M, Xie J C, He W L, Wang K, Li J Z 2020 Power System Technology 44 1276Google Scholar

    [3]

    董国静, 刘涛, 李庆民 2020 电工技术学报 35 2006Google Scholar

    Dong G J, Liu T, Li Q M 2020 Trans. China Electrotechnical. Soc. 35 2006Google Scholar

    [4]

    刘涛, 韩帅, 李庆民, 鲁旭, 黄旭炜 2016 电工技术学报 31 199Google Scholar

    Liu T, Han S, Li Q M, Lu X, Huang X W 2016 Trans. China Electrotechnical. Soc. 31 199Google Scholar

    [5]

    张开放, 张黎, 李宗蔚, 赵彤, 邹亮 2019 电工技术学报 34 3275Google Scholar

    Zhang K F, Zhang L, Li Z W, Zhao T, Zhou L 2019 Trans. China Electrotechnical. Soc. 34 3275Google Scholar

    [6]

    罗杨, 吴广宁, 刘继午, 曹开江, 彭佳, 张依强, 朱光亚 2013 中国电机工程学报 33 187Google Scholar

    Luo Y, Wu G Y, Liu J W, Cao K J, Peng J, Zhang Y Q, Zhu G Y 2013 Chin. Soc. Elec. Eng. 33 187Google Scholar

    [7]

    赵义焜, 张国强, 韩冬, 杨富尧, 刘洋 2019 电工技术学报 34 3464Google Scholar

    Zhao Y K, Zhang G Q, Han D, Yang F Y, Liu Y 2019 Trans. China Electrotechnical. Soc. 34 3464Google Scholar

    [8]

    田付强, 彭潇 2017 电工技术学报 32 3Google Scholar

    Tian F Q, Peng X 2017 Trans. China Electrotechnical. Soc. 32 3Google Scholar

    [9]

    汪佛池, 律方成, 徐志钮, 张沛红 2007 高电压技术 33 30Google Scholar

    Wang F C, Lu F C, Xu Z N, Zhang P H 2007 High Voltage Eng. 33 30Google Scholar

    [10]

    刘涛, 董国静, 李庆民, 任瀚文, 王健, 王忠东 2020 高电压技术 46 2504Google Scholar

    Liu T, Dong G J, Li Q M, Ren H W, Wang J, Wang Z D 2020 High Voltage Eng. 46 2504Google Scholar

    [11]

    Boufayed F, Teyssedre G, Laurent C, Roy Le S, Dissado L A, Ségur P, Montanari G C 2006 J. Appl. Phys. 100 104Google Scholar

    [12]

    罗杨, 吴广宁, 曹开江, 辛正亮, 张依强, 徐慧慧 2012 高电压技术 38 2707Google Scholar

    Luo Y, Wu G Y, Cao K J, Xin Z L, Zhang Y Q, Xu H H 2012 High Voltage Eng. 38 2707Google Scholar

    [13]

    鲁旭, 韩帅, 李庆民, 黄旭炜, 王学磊, 王高勇 2016 电工技术学报 31 14Google Scholar

    Lu X, Han S, Li Q M, Huang X W, Wang X L, Wang G Y 2016 Trans. China Electrotechnical. Soc. 31 14Google Scholar

    [14]

    Sarathi R, Thangabalan B, Harid N, Griffiths H 2020 IET Nanodielectrics 3 44

    [15]

    李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成 2018 物理学报 67 183101Google Scholar

    Li Y S, Xie Y L, Huang T H, Xu C, Liu G C 2018 Acta Phys. Sin. 67 183101Google Scholar

    [16]

    李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀 2020 物理学报 69 013101Google Scholar

    Li Y S, Sun L X, Zhou X, Chen K, Wang H Y 2020 Acta Phys. Sin. 69 013101Google Scholar

    [17]

    李进, 赵仁勇, 杜伯学, 苏金刚, 韩晨磊, 高田达雄 2020 高电压技术 46 772Google Scholar

    Li J, Zhao R Y, Du B X, Su J G, Han C L, Takada T 2020 High Voltage Eng. 46 772Google Scholar

    [18]

    Frish M J, Trucks G W, Schlegal H B 2010 Gaussian 09 (Revision B01) (Walling ford: Gaussian Inc. )

    [19]

    梅金硕, 杨红军, 殷景华, 雷清泉 2006 哈尔滨理工大学学报 11 50Google Scholar

    Mei J S, Yang H J, Yin J H, Lei Q Q 2006 Journal of Harbin University of Science and Technology 11 50Google Scholar

    [20]

    吴旭辉, 吴广宁, 杨雁, 张兴涛, 雷毅鑫, 钟鑫, 朱健 2018 中国电机工程学报 38 3410Google Scholar

    Wu X H, Wu G N, Yang Y, Zhang X T, Lei Y X, Zhong X, Zhu J 2018 Chin. Soc. Elec. Eng. 38 3410Google Scholar

    [21]

    李欢, 徐磊, 刘涛, 杨章勇 2021 电力工程技术 5 54Google Scholar

    Li H, Xu L, Liu T, Yang Z Y 2021 Electric Power Eng. Technology 5 54Google Scholar

    [22]

    张兴涛, 吴广宁, 杨雁, 吴旭辉, 雷毅鑫, 钟鑫 2018 高电压技术 44 3097Google Scholar

    Zhang X T, Wu G N, Yang Y, Wu X H, Lei Y X, Zhong X 2018 High Voltage Eng. 44 3097Google Scholar

    [23]

    Lu T, Chen F W 2012 J. Mol. Graph Model. 38 31Google Scholar

    [24]

    LU T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar

    [25]

    查俊伟, 田娅娅, 刘雪洁, 董晓迪, 郑明胜 2021 高电压技术 47 1759Google Scholar

    Cha J W, Tian Y Y, Liu X J, Dong X D 2021 High Voltage Eng. 47 1759Google Scholar

    [26]

    廖瑞金, 陆云才, 杨丽君, 李剑, 孙才新 2006 绝缘材料 39 51Google Scholar

    Liao R J, Lu Y C, Yang L J, Li J, Sun C X 2006 Insulating Materials 39 51Google Scholar

    [27]

    林家齐, 李兰地, 何霞霞, 杨文龙, 迟庆国, 张昌海, 谢志滨, 雷清泉 2017 电机与控制学报 21 89

    Lin J Q, Li L D, He X X, Yang W L, Chi Q G, Zhang C H, Xie Z B, Lei Q Q 2017 Electric Machines and Control 21 89

    [28]

    李盛涛, 黄奇峰, 孙健, 张拓, 李建英 2010 物理学报 59 422Google Scholar

    Li S T, Huang Q F, Sun J, Zhang T, Li J Y 2010 Acta Phys. Sin. 59 422Google Scholar

    [29]

    黄炳融, 王威望, 李盛涛, 李欣原, 蒋起航, 聂永杰, 邓云坤 2021 电气工程学报 16 25Google Scholar

    Huang B R, Wang W W, Li S T, Li X Y, Jiang Q H, Nie Y J, Deng Y K 2021 J. Electrical Eng. 16 25Google Scholar

    [30]

    罗龙波, 叶信合, 易江, 李科, 刘向阳 2021 高分子学报 52 363Google Scholar

    Luo L B, Ye X H, Yi J, Li K, Liu X Y 2021 Acta Polymerica Sinica 52 363Google Scholar

  • 图 1  PI分子结构式

    Fig. 1.  Molecular formula of PI.

    图 2  分子优化模型 (a) PI分子单链; (b) PI-OH分子单链

    Fig. 2.  Molecular optimization model: (a) PI molecular single chain; (b) Pi-OH molecular single chain.

    图 3  分子偶极矩的变化

    Fig. 3.  Changes of molecular dipole moments.

    图 4  轨道云图与能级分布图

    Fig. 4.  Orbital cloud diagram and energy level distribution diagram.

    图 5  不同电场下分子态密度图 (a) PI分子; (b) PI-OH分子

    Fig. 5.  Molecular density of states under different electric fields: (a) Pi molecule; (b) PI-OH molecule.

    图 6  分子表面静电势 (a) PI分子; (b) PI-OH分子

    Fig. 6.  Molecular surface electrostatic potential: (a) PI molecule; (b) PI-OH molecule.

    图 7  PI单链分子的轨道跃迁 (a) F=0 a.u.; (b) F = 0.010 a.u.

    Fig. 7.  Orbital transition of PI single molecule: (a) F = 0 a.u.; (b) F = 0.010 a.u..

    表 1  聚酰亚胺片断部分键长与键角

    Table 1.  Partial bond length and bond angle of polyimide fragments.

    NR(13, 14)/nmR(9, 10)/nmR(7, 9)/nmA(13, 14, 15)/(°)A(9, 7, 8)/(°)A(4, 5, 6)/(°)
    N = 11.3911.4221.422121.041126.108114.756
    N = 21.3891.4231.422121.099126.045114.894
    N = 31.3891.4211.422121.115126.011114.883
    下载: 导出CSV

    表 2  不同外电场下分子的几何结构

    Table 2.  Molecular geometry under different external electric fields.

    F/a.u.PI PI-OH
    R(50, 55)/nmA(63, 70, 71)/(°)R(46, 51)/nmA(59, 66, 67)/(°)
    01.411121.099 1.420121.162
    0.0011.411121.3301.420121.145
    0.0021.423121.4721.421121.117
    0.0031.424121.5011.426120.049
    0.0041.425121.5341.426119.595
    0.0051.426121.5801.427118.302
    0.0061.428121.6691.428117.915
    0.0071.430121.7071.428116.818
    0.0081.433121.7611.429116.387
    0.0091.436121.7921.430116.008
    0.0101.440121.9171.432115.833
    下载: 导出CSV

    表 3  不同外电场下分子前线轨道能级的变化

    Table 3.  Changes of molecular frontier orbital energy levels under different external electric fields.

    F/a.uPIPI-OH
    EH/eVEL/eVEG/eVEH/eVEL/eVEG/eV
    0–7.661–2.7394.922–7.487–3.0184.469
    0.001–7.666–2.7654.901–7.451–3.0704.381
    0.002–7.674–2.7914.883–7.405–3.1024.303
    0.003–7.655–2.8104.845–7.326–3.1464.180
    0.004–7.638–2.8174.821–7.285–3.2524.033
    0.005–7.602–2.8364.766–7.039–3.4333.606
    0.006–7.564–2.8554.709–6.902–3.5463.356
    0.007–7.535–2.8714.664–6.645–3.7882.857
    0.008–7.502–2.8914.611–6.438–3.9382.500
    0.009–7.495–2.9144.581–6.259–4.0672.192
    0.010–7.499–2.9394.560–6.116–4.2021.914
    下载: 导出CSV

    表 4  电场下空间电荷陷阱深度的变化

    Table 4.  Changes of space charge trap depth under electric field.

    E/eVF/a.u.
    00.0010.0020.0030.0040.0050.0060.0070.0080.0090.010
    PIEEA(a)2.8342.7652.6792.5942.4982.3882.2642.1261.9741.8061.622
    EEA(b)2.7212.6392.2042.1161.8991.7011.5091.2791.0060.7180.408
    Etrap0.1130.1260.4750.4790.5990.6870.7550.8470.9681.0891.214
    PI-OHEEA(a)2.9652.8642.7762.6432.4882.3302.1271.9321.6871.1700.898
    EEA(b)2.6392.5032.2582.0081.7981.5711.3291.0630.7810.4820.164
    Etrap0.3260.3610.5180.6350.6910.7580.7990.8690.9060.6880.734
    下载: 导出CSV

    表 5  PI和PI-OH单链分子的前8个激发能

    Table 5.  Top 8 excitation energies of PI and PI-OH single molecules.

     Eex/eV
    N = 1N = 2N = 3N = 4N = 5N = 6N = 7N = 8
    PI3.3693.4763.7703.8133.8213.9123.9133.990
    PI-OH3.0913.3253.3813.7273.7303.8973.9423.951
    下载: 导出CSV

    表 6  激发态S(0)→S(1)的各类参数

    Table 6.  Various parameters of excited state S(0)→S(1).

    F/a.u.Sr/a.u.DtOrbital contribution(hole)Orbital contribution(electron)
    00.3833.9981.665MO 195-12.33% MO 197-76.94%MO 198-95.01%
    0.0100.4093.6281.234MO 197-77.56%MO198-94.7%
    注: MO代表分子轨道.
    下载: 导出CSV
  • [1]

    黄旭炜, 刘涛, 舒想, 李庆民, 王忠东 2020 高电压技术 46 215Google Scholar

    Huang X W, Liu T, Shu X, Li Q M, Wang Z D 2020 High Voltage Eng. 46 215Google Scholar

    [2]

    胡一卓, 董明, 谢佳成, 何文林, 汪可, 李金忠 2020 电网技术 44 1276Google Scholar

    Hu Y Z, Dong M, Xie J C, He W L, Wang K, Li J Z 2020 Power System Technology 44 1276Google Scholar

    [3]

    董国静, 刘涛, 李庆民 2020 电工技术学报 35 2006Google Scholar

    Dong G J, Liu T, Li Q M 2020 Trans. China Electrotechnical. Soc. 35 2006Google Scholar

    [4]

    刘涛, 韩帅, 李庆民, 鲁旭, 黄旭炜 2016 电工技术学报 31 199Google Scholar

    Liu T, Han S, Li Q M, Lu X, Huang X W 2016 Trans. China Electrotechnical. Soc. 31 199Google Scholar

    [5]

    张开放, 张黎, 李宗蔚, 赵彤, 邹亮 2019 电工技术学报 34 3275Google Scholar

    Zhang K F, Zhang L, Li Z W, Zhao T, Zhou L 2019 Trans. China Electrotechnical. Soc. 34 3275Google Scholar

    [6]

    罗杨, 吴广宁, 刘继午, 曹开江, 彭佳, 张依强, 朱光亚 2013 中国电机工程学报 33 187Google Scholar

    Luo Y, Wu G Y, Liu J W, Cao K J, Peng J, Zhang Y Q, Zhu G Y 2013 Chin. Soc. Elec. Eng. 33 187Google Scholar

    [7]

    赵义焜, 张国强, 韩冬, 杨富尧, 刘洋 2019 电工技术学报 34 3464Google Scholar

    Zhao Y K, Zhang G Q, Han D, Yang F Y, Liu Y 2019 Trans. China Electrotechnical. Soc. 34 3464Google Scholar

    [8]

    田付强, 彭潇 2017 电工技术学报 32 3Google Scholar

    Tian F Q, Peng X 2017 Trans. China Electrotechnical. Soc. 32 3Google Scholar

    [9]

    汪佛池, 律方成, 徐志钮, 张沛红 2007 高电压技术 33 30Google Scholar

    Wang F C, Lu F C, Xu Z N, Zhang P H 2007 High Voltage Eng. 33 30Google Scholar

    [10]

    刘涛, 董国静, 李庆民, 任瀚文, 王健, 王忠东 2020 高电压技术 46 2504Google Scholar

    Liu T, Dong G J, Li Q M, Ren H W, Wang J, Wang Z D 2020 High Voltage Eng. 46 2504Google Scholar

    [11]

    Boufayed F, Teyssedre G, Laurent C, Roy Le S, Dissado L A, Ségur P, Montanari G C 2006 J. Appl. Phys. 100 104Google Scholar

    [12]

    罗杨, 吴广宁, 曹开江, 辛正亮, 张依强, 徐慧慧 2012 高电压技术 38 2707Google Scholar

    Luo Y, Wu G Y, Cao K J, Xin Z L, Zhang Y Q, Xu H H 2012 High Voltage Eng. 38 2707Google Scholar

    [13]

    鲁旭, 韩帅, 李庆民, 黄旭炜, 王学磊, 王高勇 2016 电工技术学报 31 14Google Scholar

    Lu X, Han S, Li Q M, Huang X W, Wang X L, Wang G Y 2016 Trans. China Electrotechnical. Soc. 31 14Google Scholar

    [14]

    Sarathi R, Thangabalan B, Harid N, Griffiths H 2020 IET Nanodielectrics 3 44

    [15]

    李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成 2018 物理学报 67 183101Google Scholar

    Li Y S, Xie Y L, Huang T H, Xu C, Liu G C 2018 Acta Phys. Sin. 67 183101Google Scholar

    [16]

    李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀 2020 物理学报 69 013101Google Scholar

    Li Y S, Sun L X, Zhou X, Chen K, Wang H Y 2020 Acta Phys. Sin. 69 013101Google Scholar

    [17]

    李进, 赵仁勇, 杜伯学, 苏金刚, 韩晨磊, 高田达雄 2020 高电压技术 46 772Google Scholar

    Li J, Zhao R Y, Du B X, Su J G, Han C L, Takada T 2020 High Voltage Eng. 46 772Google Scholar

    [18]

    Frish M J, Trucks G W, Schlegal H B 2010 Gaussian 09 (Revision B01) (Walling ford: Gaussian Inc. )

    [19]

    梅金硕, 杨红军, 殷景华, 雷清泉 2006 哈尔滨理工大学学报 11 50Google Scholar

    Mei J S, Yang H J, Yin J H, Lei Q Q 2006 Journal of Harbin University of Science and Technology 11 50Google Scholar

    [20]

    吴旭辉, 吴广宁, 杨雁, 张兴涛, 雷毅鑫, 钟鑫, 朱健 2018 中国电机工程学报 38 3410Google Scholar

    Wu X H, Wu G N, Yang Y, Zhang X T, Lei Y X, Zhong X, Zhu J 2018 Chin. Soc. Elec. Eng. 38 3410Google Scholar

    [21]

    李欢, 徐磊, 刘涛, 杨章勇 2021 电力工程技术 5 54Google Scholar

    Li H, Xu L, Liu T, Yang Z Y 2021 Electric Power Eng. Technology 5 54Google Scholar

    [22]

    张兴涛, 吴广宁, 杨雁, 吴旭辉, 雷毅鑫, 钟鑫 2018 高电压技术 44 3097Google Scholar

    Zhang X T, Wu G N, Yang Y, Wu X H, Lei Y X, Zhong X 2018 High Voltage Eng. 44 3097Google Scholar

    [23]

    Lu T, Chen F W 2012 J. Mol. Graph Model. 38 31Google Scholar

    [24]

    LU T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar

    [25]

    查俊伟, 田娅娅, 刘雪洁, 董晓迪, 郑明胜 2021 高电压技术 47 1759Google Scholar

    Cha J W, Tian Y Y, Liu X J, Dong X D 2021 High Voltage Eng. 47 1759Google Scholar

    [26]

    廖瑞金, 陆云才, 杨丽君, 李剑, 孙才新 2006 绝缘材料 39 51Google Scholar

    Liao R J, Lu Y C, Yang L J, Li J, Sun C X 2006 Insulating Materials 39 51Google Scholar

    [27]

    林家齐, 李兰地, 何霞霞, 杨文龙, 迟庆国, 张昌海, 谢志滨, 雷清泉 2017 电机与控制学报 21 89

    Lin J Q, Li L D, He X X, Yang W L, Chi Q G, Zhang C H, Xie Z B, Lei Q Q 2017 Electric Machines and Control 21 89

    [28]

    李盛涛, 黄奇峰, 孙健, 张拓, 李建英 2010 物理学报 59 422Google Scholar

    Li S T, Huang Q F, Sun J, Zhang T, Li J Y 2010 Acta Phys. Sin. 59 422Google Scholar

    [29]

    黄炳融, 王威望, 李盛涛, 李欣原, 蒋起航, 聂永杰, 邓云坤 2021 电气工程学报 16 25Google Scholar

    Huang B R, Wang W W, Li S T, Li X Y, Jiang Q H, Nie Y J, Deng Y K 2021 J. Electrical Eng. 16 25Google Scholar

    [30]

    罗龙波, 叶信合, 易江, 李科, 刘向阳 2021 高分子学报 52 363Google Scholar

    Luo L B, Ye X H, Yi J, Li K, Liu X Y 2021 Acta Polymerica Sinica 52 363Google Scholar

  • [1] 邢凤竹, 崔建坡, 王艳召, 顾建中. 激发态丰质子核的双质子发射. 物理学报, 2022, 71(6): 062301. doi: 10.7498/aps.71.20211839
    [2] 王亚超, 林晓然, 王梅, 王吉芳, 陈玲. 电场下饱和甘油三酯分子特性. 物理学报, 2021, 70(23): 233101. doi: 10.7498/aps.70.20211435
    [3] 李亚莎, 夏宇, 刘世冲, 瞿聪. 从聚酰亚胺单分子链电荷陷阱特性的改变探讨体材料的沿面放电现象. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211611
    [4] 彭婕, 张嗣杰, 王苛, DoveMartin. 经式8-羟基喹啉铝的光谱与激发性质密度泛函. 物理学报, 2020, 69(2): 023101. doi: 10.7498/aps.69.20191453
    [5] 李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀. 基于密度泛函理论的外电场下C5F10O的结构及其激发特性. 物理学报, 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [6] 李媛媛, 胡竹斌, 孙海涛, 孙真荣. 胆红素分子激发态性质的密度泛函理论研究. 物理学报, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [7] 张锦芳, 任雅娜, 王军民, 杨保东. 铯原子激发态双色偏振光谱. 物理学报, 2019, 68(11): 113201. doi: 10.7498/aps.68.20181872
    [8] 聂永杰, 赵现平, 李盛涛. 聚乙烯陷阱特性对真空直流沿面闪络性能的影响. 物理学报, 2019, 68(22): 227201. doi: 10.7498/aps.68.20190741
    [9] 袁端磊, 闵道敏, 黄印, 谢东日, 王海燕, 杨芳, 朱志豪, 费翔, 李盛涛. 掺杂含量对环氧纳米复合电介质陷阱与空间电荷的影响. 物理学报, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [10] 马超, 闵道敏, 李盛涛, 郑旭, 李西育, 闵超, 湛海涯. 聚丙烯/氧化铝纳米电介质的陷阱与直流击穿特性. 物理学报, 2017, 66(6): 067701. doi: 10.7498/aps.66.067701
    [11] 赵翠兰, 王丽丽, 赵丽丽. 有限深抛物势量子盘中极化子的激发态性质. 物理学报, 2015, 64(18): 186301. doi: 10.7498/aps.64.186301
    [12] 刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰. GeO分子激发态的电子结构和跃迁性质的组态相互作用方法研究. 物理学报, 2015, 64(12): 123101. doi: 10.7498/aps.64.123101
    [13] 曹欣伟, 任杨, 刘慧, 李姝丽. 强外电场作用下BN分子的结构与激发特性. 物理学报, 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [14] 田原野, 郭福明, 曾思良, 杨玉军. 原子激发态在高频强激光作用下的光电离研究. 物理学报, 2013, 62(11): 113201. doi: 10.7498/aps.62.113201
    [15] 廖瑞金, 周天春, George Chen, 杨丽君. 聚合物材料空间电荷陷阱模型及参数. 物理学报, 2012, 61(1): 017201. doi: 10.7498/aps.61.017201
    [16] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质. 物理学报, 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [17] 周业宏, 蔡绍洪. 氯乙烯在外电场下的激发态结构研究. 物理学报, 2010, 59(11): 7749-7755. doi: 10.7498/aps.59.7749
    [18] 李盛涛, 黄奇峰, 孙健, 张拓, 李建英. 聚集态和陷阱对交联聚乙烯真空沿面闪络特性的影响. 物理学报, 2010, 59(1): 422-429. doi: 10.7498/aps.59.422
    [19] 矫玉秋, 赵 昆, 卢贵武. H3PAuPh与(H3PAu)2(1,4-C6H4)2光谱性质的密度泛函研究. 物理学报, 2008, 57(3): 1592-1598. doi: 10.7498/aps.57.1592
    [20] 顾 斌, 金年庆, 王志萍, 曾祥华. 用含时密度泛函理论计算钠原子跃迁光谱. 物理学报, 2005, 54(10): 4648-4653. doi: 10.7498/aps.54.4648
计量
  • 文章访问数:  4814
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-31
  • 修回日期:  2021-10-14
  • 上网日期:  2022-02-24
  • 刊出日期:  2022-03-05

/

返回文章
返回