搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电场下饱和甘油三酯分子特性

王亚超 林晓然 王梅 王吉芳 陈玲

引用本文:
Citation:

电场下饱和甘油三酯分子特性

王亚超, 林晓然, 王梅, 王吉芳, 陈玲

Characteristics of saturated triglycerides under electric field

Wang Ya-Chao, Lin Xiao-Ran, Wang Mei, Wang Ji-Fang, Chen Ling
PDF
HTML
导出引用
  • 短-中链饱和甘油三酯是一种黏度低、可降解的液体绝缘材料, 在变压器内绝缘领域具有潜在的应用价值. 本文通过设置与绝缘油中放电相当的电场强度等级, 使用密度泛函与含时密度泛函方法研究了短-中链饱和甘油三酯分子在电场影响下的分子特性变化规律. 研究结果表明, 电场下分子结构发生明显改变, 分子键长与电场存在明显的依赖关系; 相同电场下, 随着碳链长度的增大, 分子的偶极矩增大, 分子极性增强; 在109 V/m量级的电场强度下, 三辛酸甘油酯与三癸酸甘油酯的最高占据态分子轨道能量明显增大, 电离势急剧减小; 分子间的激发特性差异较小, 都随着电场强度的增大呈现出减小趋势, 且相同电场下分子激发能的减小幅度远小于电离势的减小幅度. 研究结果有助于提高人们对酯类绝缘介质中放电机理的认识, 并为天然酯绝缘油的性能改进提供一定的理论支撑.
    Short-medium chain saturated triglyceride is a low viscosity and degradable liquid dielectric material, which has potential applications in the field of transformer internal insulation. In this paper, the molecular properties of short-medium chain saturated triglycerides under the action of electric field are studied by using density functional theory and time-dependent density functional theory. The results show that the molecular bond length is obviously dependent on the electric field intensity, which is consistent with the shift of the infrared wave number peak. Under the same electric field, with the increase of the length of carbon chain, the dipole moment and polarity of the molecule increase correspondingly. When the electric field intensity is 109 V/m, the energy of the highest occupied molecular orbital of tricaprylin and tricaprin increases obviously, and the ionization potential decreases sharply. The difference in excitation characteristic between molecules is small, and the decrease of excitation energy is much smaller than that of ionization potential under the same electric field. The results are helpful in improving the understanding of discharge mechanism in ester dielectric, and provide the theoretical support for the performance improvement of natural ester insulating oil.
      通信作者: 林晓然, lxr1236@126.com ; 王梅, qfwmei@126.com
    • 基金项目: 河北省高等学校科学技术研究项目(批准号: QN2019069)和河北经贸大学科研基金(批准号: 2019YB11)资助的课题.
      Corresponding author: Lin Xiao-Ran, lxr1236@126.com ; Wang Mei, qfwmei@126.com
    • Funds: Project supported by the Science and Technology Research Project of Higher Education of Hebei Province, China (Grant No. QN2019069) and the Research Foundation of Hebei University of Economics and Business, China (Grant No. 2019YB11).
    [1]

    Dong L, Zhong X, He J, Zhang L, Huang X 2016 Clin. Nutr. 35 399Google Scholar

    [2]

    Heerdt B G, Houston M A, Anthony G M, Augenlicht L H 1999 Cancer Res. 59 1584

    [3]

    Fofana I 2013 IEEE Electr. Insul. Mag. 29 13Google Scholar

    [4]

    Wedin P 2014 IEEE Electr. Insul. Mag. 30 20Google Scholar

    [5]

    Thakur S, Sarathi R, Danikas M G 2019 Electr. Eng. 101 1007Google Scholar

    [6]

    Dombek G, Gielniak J 2018 IEEE Trans. Dielectr. Electr. Insul. 5 1846Google Scholar

    [7]

    Trnka P, Hornak J, Prosr P, Michal O, Wang F 2020 IEEE Access 8 61989Google Scholar

    [8]

    Rozga P 2016 IET Sci. Meas. Technol. 10 665Google Scholar

    [9]

    Rodríguez M, Galán M 1995 Chem. Eng. J. 60 117Google Scholar

    [10]

    Tobazcon R 1994 IEEE Trans. Dielectr. Electr. Insul. 1 1132Google Scholar

    [11]

    Beroual A, Zahn M, Badent A, Kist K, Torshin Y 1998 IEEE Electr. Insul. Mag. 14 6Google Scholar

    [12]

    Rozga P 2015 IEEE Trans. Dielectr. Electr. Insul. 22 2754Google Scholar

    [13]

    Li J, Wang Y C, Wang F P, Liang S N, Lin X, Chen X P, Zhou J H 2017 Phys. Lett. A 381 3732Google Scholar

    [14]

    Wang Y C, Wang F P, Li J, Liang S N, Zhou J H 2018 Energies 11 523Google Scholar

    [15]

    Smalo H S, Hestad Ø, Ingebrigtsen S, Åstrand P O 2011 J. Appl. Phys. 109 073306Google Scholar

    [16]

    Wang Y C, Wang F P, Li J, Huang Z Y, Liang S N, Zhou J H 2017 Energies 10 510Google Scholar

    [17]

    黄多辉, 王藩侯, 程晓洪, 万明杰 蒋刚 2011 物理学报 60 123101Google Scholar

    Huang D H, Wang P H, Cheng X H, Wang M J, Jiang G 2011 Acta Phys. Sin. 60 123101Google Scholar

    [18]

    Xu G L, Liu X F, Xie H X, Zhang X Z, Liu Y F 2010 Chin. Phys. B 19 113201Google Scholar

    [19]

    曹欣伟, 任杨, 刘慧, 李姝丽 2014 物理学报 63 043101Google Scholar

    Cao X W, Ren Y, Liu H, Li S L 2014 Acta Phys. Sin. 63 043101Google Scholar

    [20]

    Xu G L, Xie H X, Wei Y, Zhang X Z Liu Y F 2012 Chin. Phys. B 21 153Google Scholar

    [21]

    Grozema F C, Telesca R, Jonkman H T, Siebbeles L, Snijders J G 2001 J. Chem. Phys. 115 10014Google Scholar

    [22]

    杜建宾, 武德起, 唐延林, 隆正文 2015 物理学报 64 073101Google Scholar

    Du J B, Wu D Q, Tang Y L, Long Z W 2015 Acta Phys. Sin. 64 073101Google Scholar

    [23]

    袁伟 2013 硕士学位论文 (新乡: 河南师范大学)

    Yuan W 2013 M. S. Thesis (Xinxiang: Henan Normal University) (in Chinese)

    [24]

    NIST Computational Chemistry Comparison and Benchmark Data Basehttp://cccbdb.nist.gov/vibscalejust.asp [2020-8-1]

    [25]

    NIST Standard Reference Database 69: Chemistry WebBook https://webbook.nist.gov/chemistry/ [2018-10-1]

    [26]

    凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠 2013 物理学报 62 223102Google Scholar

    Ling Z G, Tang Y L, Li T, Li Y P, Wei X N 2013 Acta Phys. Sin. 62 223102Google Scholar

    [27]

    李晓虎 2006 博士学位论文 (重庆: 重庆大学)

    Li X H 2006 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese)

    [28]

    李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平 秦水介 2015 物理学报 64 043101Google Scholar

    Li S X, Wu Y G, Linghu R F, Sun G Y, Zhang Z P, Qing S J 2015 Acta Phys. Sin. 64 043101Google Scholar

    [29]

    Li J, Liu X Y, Zhu Z H, Sheng Y 2012 Chin. Phys. B 21 033101Google Scholar

    [30]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580Google Scholar

    [31]

    Smalo H S, Astrand P O Ingebrigtsen S 2010 IEEE Trans. Dielectr. Electr. Insul. 17 733Google Scholar

    [32]

    Jadidian J, Zahn M, Lavesson N, Widlund O, Borg K 2012 IEEE Trans. Plasma Sci. 40 909Google Scholar

  • 图 1  C6∶0的分子构型

    Fig. 1.  Molecular configuration of C6∶0.

    图 2  电场下C6∶0的分子的红外光谱

    Fig. 2.  The infrared spectra of C6∶0 molecule under electric field.

    图 3  电场下分子的偶极矩

    Fig. 3.  The molecular dipole moment under electric field.

    图 4  电场下分子的总能量

    Fig. 4.  The molecular total energy under electric field.

    图 5  电场下分子的前线轨道能量

    Fig. 5.  The Frontier molecular orbital energy under electric field.

    图 6  电场下分子的能隙

    Fig. 6.  The molecular energy gap under electric field.

    图 7  电场下C6∶0分子的前线轨道云图

    Fig. 7.  The cloud image of C6∶0 molecular frontier orbital under electric field.

    图 8  电场下不同分子的电离势

    Fig. 8.  The ionization potential of different molecules under electric field.

    表 1  不同计算方法的比较

    Table 1.  Comparison of different calculation methods

    方法甘油
    三酯
    波数 v/ cm–1
    C—O—OC=OC—H
     C2:01235.81816.32938.4
    C4:01185.91809.52938.3
    HF/631+
    G*/0.90
    C6:011621809.22926.4
    C8:01179.51809.12926.2
    C10:01160.21808.92908.9
    C2:01173.91787.12602.1
    C4:01131.21778.32993.7
    B3LYP/631G*/0.96C6:01126.81778.22983.1
    C8:01125.21778.22981.7
    C10:01089.31778.22907.7
    C2:01181.61756.82956.7
    C4:01123.31750.72987.5
    B3LYP/631+G*/0.96C6:01119.11750.52975.6
    C8:01117.61750.42940.5
    C10:01116.51750.42943.9
    C2:01164.11751.32936.3
    C4:01107.61745.42966.1
    B3LYP/6311++G**/0.96C6:01104.21745.12959.5
    C8:0110317452895.9
    C10:01102.317452929.9
    C2:01208.01738.62950.0
    实验值C4:01159.01736.52962.5
    C6:01159.81744.42950.4
     C8:01155.51747.52958.3
    C10:0
    下载: 导出CSV

    表 2  电场下C6∶0分子的键长

    Table 2.  Bond length of C6∶0 molecule under electric field.

    E/(108 V·m–1)2C—9O/Å12C—9O/Å12C=13O/Å5C—10O/Å14C—10O/Å14C = 15O/Å1C—11O/Å16C=17O/Å
    –381.4351.3891.2051.4341.3791.2091.4381.214
    –251.4341.3881.2071.4331.3791.2071.4321.211
    –131.4341.3841.2071.4311.3761.2071.4301.209
    –5.11.4341.3811.2071.4311.3731.2061.4291.208
    –2.61.4341.3801.2071.4321.3721.2081.4281.208
    01.4341.3801.2071.4331.3711.2071.4281.207
    2.61.4341.3791.2071.4331.3701.2081.4281.207
    5.11.4341.3781.2071.4341.3691.2081.4281.207
    131.4351.3751.2081.4361.3661.2101.4281.206
    251.4341.3731.2091.4391.3601.2131.4281.205
    381.4341.3701.2111.4431.3551.2161.4251.203
    下载: 导出CSV

    表 3  电场下C6∶0分子的前线轨道组分

    Table 3.  The frontier orbital composition of C6∶0 molecule under electric field.

    E/(108 V·m–1)Composition of the HOMO and LUMO (>3%)
    –38HOMO5C∶3.73, 12C∶4.49, 37C∶3.35, 40C∶11.88, 43H∶4.08, 45C∶18.02, 46C∶13.24, 47H∶4.2, 48H∶10.08, 50H∶6.99
    LUMO1C∶18.58, 2C∶18.88, 5C∶31.84, 18C∶6.56, 19C∶10.27, 22C∶6.87
    –5.1HOMO2C∶3.07, 12C∶3.36, 13O∶34.35, 36C∶25.08, 37C∶5.25, 40C∶4.97
    LUMO1C∶7.12, 2C∶7.25, 14C∶5.28, 18C∶25.35, 19C∶33.40, 27C∶6.48, 28C3.29, 31C∶3.17
    0HOMO2C∶5.86, 5C∶5.03, 11O∶7.80, 17O∶31.35, 18C∶17.39, 19C∶5.15, 22C∶5.58
    LUMO1C∶5.77, 2C∶6.75, 14C∶4.68, 18C∶26.92, 19C∶32.22, 27C∶7.36, 28C∶4.81, 31C∶3.87
    5.1HOMO2C∶5.62, 5C∶4.92, 11O∶8.19, 12C∶3.31, 16C∶3.17, 17O∶32.67, 18C∶17.61, 19C∶5.21, 22C∶5.88
    LUMO1C∶8.10, 2C∶9.33, 14C∶3.39, 18C∶7.20, 19C∶29.10, 27C∶6.93, 28C∶4.89, 31C∶4.08
    38HOMO1C∶15.52, 2C∶31.37, 18C∶5.46, 19C∶7.80, 52C∶8.47, 53C∶6.22, 54H∶4.66, 55H∶5.03, 57H∶3.53, 58H∶3.32
    LUMO27C∶9.74, 28C∶26.00, 31C∶33.47, 59C∶26.02
    下载: 导出CSV

    表 4  电场下分子的激发态

    Table 4.  The molecular excited state under electric field.

    分子E /(108 V·m–1) m = 1m = 2m = 3m = 4m = 5m = 6m = 7m = 8m = 9
    0Eex /eV5.62195.64225.66576.64496.66836.75036.77546.85326.8874
    λ /nm220.54219.74218.83186.59185.93183.67182.99180.91180.02
    f0.00090.00090.00040.00560.00150.01770.00960.00190.0032
    5.1Eex /eV5.61495.64185.66196.63586.68486.73566.76266.85066.8776
    C2∶0λ /nm220.81219.76218.98186.84185.47184.07183.34180.98180.27
    f0.00090.00090.00050.00710.00090.01690.00980.00410.0022
    26Eex /eV5.58595.63665.6436.39586.47346.55076.71106.80136.8396
    λ /nm221.96219.96219.71193.85191.53189.27184.75182.30181.27
    f0.00080.00090.00040.00400.00240.00700.00050.02270.0023
    0Eex /eV5.66095.67515.70146.60736.62486.72056.74786.85536.8990
    λ /nm219.02218.47217.46187.65187.15184.49183.74180.86179.71
    f0.00040.00050.00020.00170.01150.01130.00040.00130.0055
    5.1Eex /eV5.65515.67475.69916.60706.62716.70766.73916.85106.8983
    C6∶0λ /nm219.24218.49217.55187.66187.09184.84183.98180.97179.73
    f0.00040.00050.00020.01270.00060.01100.00020.00510.0017
    26Eex /eV5.63145.66975.68086.38066.45936.51786.72846.78546.8576
    λ /nm220.17218.68218.25194.31191.95190.22184.27182.72180.80
    f0.00040.00040.00010.00620.00110.00370.00040.01230.0011
    0Eex /eV5.65945.67355.70056.60056.61866.71336.74326.85166.8955
    λ /nm219.08218.53217.5187.84187.33184.68183.87180.96179.80
    f0.00040.00050.00020.00170.01240.01170.00040.00140.0056
    5.1Eex /eV5.65385.67345.69846.59916.62066.70026.73366.84436.8952
    C10∶0λ /nm219.29218.54217.58187.88187.27185.05184.13181.15179.81
    f0.00040.00050.00020.01360.00050.01150.00020.00520.0019
    26Eex /eV5.63035.66765.68126.37526.45616.50996.72466.77456.8546
    λ /nm220.21218.76218.24194.48192.04190.45184.37183.01180.88
     f0.00040.00040.00010.00670.00100.00400.00050.01320.0010
    下载: 导出CSV
  • [1]

    Dong L, Zhong X, He J, Zhang L, Huang X 2016 Clin. Nutr. 35 399Google Scholar

    [2]

    Heerdt B G, Houston M A, Anthony G M, Augenlicht L H 1999 Cancer Res. 59 1584

    [3]

    Fofana I 2013 IEEE Electr. Insul. Mag. 29 13Google Scholar

    [4]

    Wedin P 2014 IEEE Electr. Insul. Mag. 30 20Google Scholar

    [5]

    Thakur S, Sarathi R, Danikas M G 2019 Electr. Eng. 101 1007Google Scholar

    [6]

    Dombek G, Gielniak J 2018 IEEE Trans. Dielectr. Electr. Insul. 5 1846Google Scholar

    [7]

    Trnka P, Hornak J, Prosr P, Michal O, Wang F 2020 IEEE Access 8 61989Google Scholar

    [8]

    Rozga P 2016 IET Sci. Meas. Technol. 10 665Google Scholar

    [9]

    Rodríguez M, Galán M 1995 Chem. Eng. J. 60 117Google Scholar

    [10]

    Tobazcon R 1994 IEEE Trans. Dielectr. Electr. Insul. 1 1132Google Scholar

    [11]

    Beroual A, Zahn M, Badent A, Kist K, Torshin Y 1998 IEEE Electr. Insul. Mag. 14 6Google Scholar

    [12]

    Rozga P 2015 IEEE Trans. Dielectr. Electr. Insul. 22 2754Google Scholar

    [13]

    Li J, Wang Y C, Wang F P, Liang S N, Lin X, Chen X P, Zhou J H 2017 Phys. Lett. A 381 3732Google Scholar

    [14]

    Wang Y C, Wang F P, Li J, Liang S N, Zhou J H 2018 Energies 11 523Google Scholar

    [15]

    Smalo H S, Hestad Ø, Ingebrigtsen S, Åstrand P O 2011 J. Appl. Phys. 109 073306Google Scholar

    [16]

    Wang Y C, Wang F P, Li J, Huang Z Y, Liang S N, Zhou J H 2017 Energies 10 510Google Scholar

    [17]

    黄多辉, 王藩侯, 程晓洪, 万明杰 蒋刚 2011 物理学报 60 123101Google Scholar

    Huang D H, Wang P H, Cheng X H, Wang M J, Jiang G 2011 Acta Phys. Sin. 60 123101Google Scholar

    [18]

    Xu G L, Liu X F, Xie H X, Zhang X Z, Liu Y F 2010 Chin. Phys. B 19 113201Google Scholar

    [19]

    曹欣伟, 任杨, 刘慧, 李姝丽 2014 物理学报 63 043101Google Scholar

    Cao X W, Ren Y, Liu H, Li S L 2014 Acta Phys. Sin. 63 043101Google Scholar

    [20]

    Xu G L, Xie H X, Wei Y, Zhang X Z Liu Y F 2012 Chin. Phys. B 21 153Google Scholar

    [21]

    Grozema F C, Telesca R, Jonkman H T, Siebbeles L, Snijders J G 2001 J. Chem. Phys. 115 10014Google Scholar

    [22]

    杜建宾, 武德起, 唐延林, 隆正文 2015 物理学报 64 073101Google Scholar

    Du J B, Wu D Q, Tang Y L, Long Z W 2015 Acta Phys. Sin. 64 073101Google Scholar

    [23]

    袁伟 2013 硕士学位论文 (新乡: 河南师范大学)

    Yuan W 2013 M. S. Thesis (Xinxiang: Henan Normal University) (in Chinese)

    [24]

    NIST Computational Chemistry Comparison and Benchmark Data Basehttp://cccbdb.nist.gov/vibscalejust.asp [2020-8-1]

    [25]

    NIST Standard Reference Database 69: Chemistry WebBook https://webbook.nist.gov/chemistry/ [2018-10-1]

    [26]

    凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠 2013 物理学报 62 223102Google Scholar

    Ling Z G, Tang Y L, Li T, Li Y P, Wei X N 2013 Acta Phys. Sin. 62 223102Google Scholar

    [27]

    李晓虎 2006 博士学位论文 (重庆: 重庆大学)

    Li X H 2006 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese)

    [28]

    李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平 秦水介 2015 物理学报 64 043101Google Scholar

    Li S X, Wu Y G, Linghu R F, Sun G Y, Zhang Z P, Qing S J 2015 Acta Phys. Sin. 64 043101Google Scholar

    [29]

    Li J, Liu X Y, Zhu Z H, Sheng Y 2012 Chin. Phys. B 21 033101Google Scholar

    [30]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580Google Scholar

    [31]

    Smalo H S, Astrand P O Ingebrigtsen S 2010 IEEE Trans. Dielectr. Electr. Insul. 17 733Google Scholar

    [32]

    Jadidian J, Zahn M, Lavesson N, Widlund O, Borg K 2012 IEEE Trans. Plasma Sci. 40 909Google Scholar

  • [1] 邢凤竹, 崔建坡, 王艳召, 顾建中. 激发态丰质子核的双质子发射. 物理学报, 2022, 71(6): 062301. doi: 10.7498/aps.71.20211839
    [2] 李亚莎, 夏宇, 刘世冲, 瞿聪. 从聚酰亚胺单分子链电荷陷阱特性的改变探讨体材料的沿面放电现象. 物理学报, 2022, 71(5): 052101. doi: 10.7498/aps.71.20211611
    [3] 李亚莎, 夏宇, 刘世冲, 瞿聪. 从聚酰亚胺单分子链电荷陷阱特性的改变探讨体材料的沿面放电现象. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211611
    [4] 彭婕, 张嗣杰, 王苛, DoveMartin. 经式8-羟基喹啉铝的光谱与激发性质密度泛函. 物理学报, 2020, 69(2): 023101. doi: 10.7498/aps.69.20191453
    [5] 李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀. 基于密度泛函理论的外电场下C5F10O的结构及其激发特性. 物理学报, 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [6] 李媛媛, 胡竹斌, 孙海涛, 孙真荣. 胆红素分子激发态性质的密度泛函理论研究. 物理学报, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [7] 张锦芳, 任雅娜, 王军民, 杨保东. 铯原子激发态双色偏振光谱. 物理学报, 2019, 68(11): 113201. doi: 10.7498/aps.68.20181872
    [8] 邢伟, 孙金锋, 施德恒, 朱遵略. icMRCI+Q理论研究BF+离子电子态的光谱性质和预解离机理. 物理学报, 2018, 67(6): 063301. doi: 10.7498/aps.67.20172114
    [9] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算. 物理学报, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [10] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. icMRCI+Q理论研究CF+离子12个-S态和23个态的光谱性质. 物理学报, 2016, 65(3): 033102. doi: 10.7498/aps.65.033102
    [11] 赵翠兰, 王丽丽, 赵丽丽. 有限深抛物势量子盘中极化子的激发态性质. 物理学报, 2015, 64(18): 186301. doi: 10.7498/aps.64.186301
    [12] 曹欣伟, 任杨, 刘慧, 李姝丽. 强外电场作用下BN分子的结构与激发特性. 物理学报, 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [13] 田原野, 郭福明, 曾思良, 杨玉军. 原子激发态在高频强激光作用下的光电离研究. 物理学报, 2013, 62(11): 113201. doi: 10.7498/aps.62.113201
    [14] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质. 物理学报, 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [15] 矫玉秋, 赵 昆, 卢贵武. H3PAuPh与(H3PAu)2(1,4-C6H4)2光谱性质的密度泛函研究. 物理学报, 2008, 57(3): 1592-1598. doi: 10.7498/aps.57.1592
    [16] 马 靖, 丁 蕾, 顾学军, 郑海洋, 方 黎, 张为俊, 黄超群, 卫立夏, 杨 斌, 齐 飞. 四氯乙烯的同步辐射光电离研究. 物理学报, 2006, 55(1): 137-141. doi: 10.7498/aps.55.137
    [17] 马 靖, 丁 蕾, 顾学军, 方 黎, 张为俊, 卫立夏, 王 晶, 杨 斌, 黄超群, 齐 飞. 三氯乙烯的真空紫外同步辐射光电离和光解离. 物理学报, 2006, 55(6): 2708-2713. doi: 10.7498/aps.55.2708
    [18] 毛华平, 杨兰蓉, 王红艳, 朱正和, 唐永建. 钇小团簇的结构和电离势的计算. 物理学报, 2005, 54(11): 5126-5129. doi: 10.7498/aps.54.5126
    [19] 顾 斌, 金年庆, 王志萍, 曾祥华. 用含时密度泛函理论计算钠原子跃迁光谱. 物理学报, 2005, 54(10): 4648-4653. doi: 10.7498/aps.54.4648
    [20] 胡正发, 王振亚, 孔祥蕾, 张先燚, 李海洋, 周士康, 王娟, 武国华, 盛六四, 张允武. 甲胺分子的同步辐射光电离解离质谱. 物理学报, 2002, 51(2): 235-239. doi: 10.7498/aps.51.235
计量
  • 文章访问数:  3073
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-03
  • 修回日期:  2021-08-21
  • 上网日期:  2021-09-15
  • 刊出日期:  2021-12-05

/

返回文章
返回