搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子激发态在高频强激光作用下的光电离研究

田原野 郭福明 曾思良 杨玉军

引用本文:
Citation:

原子激发态在高频强激光作用下的光电离研究

田原野, 郭福明, 曾思良, 杨玉军

Investigation of photoionization of excited atom irradiated by the high-frequency intense laser

Tian Yuan-Ye, Guo Fu-Ming, Zeng Si-Liang, Yang Yu-Jun
PDF
导出引用
  • 本文通过数值求解动量空间的三维含时薛定谔方程, 研究了原子高激发态在高频激光脉冲作用下, 在电离阈值附近的光电子能谱和两维动量角分布. 研究结果表明: 在该能量范围内, 单光子电离过程的贡献是最主要的. 体系初态的主量子数可以由光电子能谱峰值的位置来确定; 体系初态的角量子数可以通过光电子的两维动量角度分布确定. 在比较宽泛的参数范围内, 这一规律不随入射激光的强度和脉冲时间宽度的改变而改变, 因此原则上可以利用它对原子的初态进行识别. 此外, 还研究了体系的初态为相干叠加态, 光电子动量谱随着叠加态相对相位的变化规律.
    Solving numerically the time-dependent Schrödinger equation in three-dimensional momentum space, we have investigated the energy spectroscopy and two-dimensional momentum angular distribution near the ionization threshold of the photoelectron generated from excited atom under the action of high-frequency laser pulse. The results show that the ionized process is mainly the single-photon ionization in this energy range. The principal quantum number of the initial state can be determined by the position of the first peak in photoelectron spectrum; its angular quantum number of the initial state can be determined by the angular distribution of the two-dimensional momentum of the photoelectron. This law does not change with the variation of the intensity and pulse duration of the incident laser pulse within a relatively broad range of these parameters. In principle, we can utilize these spectra to identify the initial state of the atoms. In addition, the photoelectron momentum spectrum of superposition state is investigated for different relative phase of the state.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2013CB922200)、国家自然科学基金(批准号: 11274141, 11034003, 11274001)和中国工程物理研究院科学技术发展基金(批准号: 2011B0102026)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB922200), the National Natural Science Foundation of China (Grant Nos. 11274141, 11034003, 11274001), and the Science and Technology Funds of China Academy of Engineering Physics (Grant No. 2011B0102026).
    [1]

    Macklin J J, Kmetec J D, Gordon C L 1993 Phys. Rev. Lett. 70 766

    [2]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227

    [3]

    Wang B B, Li X F, Gao L H, Fu P M, Guo D S, Freeman R R 2001 Chin. Phys. Lett. 18 1199

    [4]

    Cormier E, Garzella D, Breger P, Agostini P, Cheriaux G, Leblanc C 2001 J. Phys. B 34 L9

    [5]

    Becker W, Grasbon F, Kopold R, Milosevic D B, Paulus G G, Walther H 2002 Advances in Atomic, Molecular, and Optical Physics 48 35

    [6]

    Grasbon F, Paulus G G, Walther H, Villoresi P, Sansone G, Stagira S, Nisoli M, Silverstri S 2003 Phys. Rev. Lett. 91 173003

    [7]

    Armstrong G S J, Parker J S, Taylor K T 2011 New. J. Phys. 13 013024

    [8]

    Paulus G G, Nicklich W, Xu H, Lambropoulos P, Walther H 1994 Phys. Rev. Lett. 72 2851

    [9]

    Toyota K, Tolstikhin O I, Morishita T, Watanabe S 2009 Phys. Rev. Lett. 103 153003

    [10]

    Telnov D A, Chu S I 2009 Phys. Rev. A 79 043421

    [11]

    Tian Y Y, Guo F M, Yang Y J, The effect of atomic potential on above threshold ionization (to be published)

    [12]

    Tong X M, Hino K, Toshima N 2008 Phys. Rev. A 74 031405(R)

    [13]

    Kling M F, Rauschenberger J, Verhoef A J, Hasovic E, Uphues T, Milosevic D B, Muller H G, Vrakking M J J 2008 New. Journal. Phys. 10 025024

    [14]

    Meckel M, Comtois D, Zeidler D, Staudte A, Pavicic D, Bandulet H C, Pepin H, Kieffer J C, Dorner R, Villeneuve D M, Corkum P B 2008 Science 320 1478

    [15]

    van der Zwan E V, Lein M 2012 Phys. Rev. Lett. 108 043004

    [16]

    Ebadi H, Keitel C H, Hatsagortsyan 2011 Phys. Rev. A 83 063418

    [17]

    Ebadi H 2012 J. Opt. Soc. Am. B 29 2503

    [18]

    Song Y, Guo F M, Li S Y, Chen J G, Zeng S L, Yang Y J 2012 Phys. Rev. A 86 033424

    [19]

    Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X, Sun J Z 2007 Chin. Phys. Lett. 24 1537

    [20]

    Chen J G, Wang R Q, Zhai Z, Chen J, Fu P M, Wang B B, Liu W M 2012 Phys. Rev. A 86 033417

    [21]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614

    [22]

    Chen J G, Yang Y J, Zeng S L, Liang H Q 2011 Phys. Rev. A 83 023401

    [23]

    Zhou Z Y, Chu S I 2011 Phys. Rev. A 83 013405

    [24]

    Landau R H 1983 Phys. Rev. C 27 2191

    [25]

    Maung K M, Kahana D E, Norbury J W 1993 Phys. Rev. D 47 1182

    [26]

    Norbury J W, Maung K M, Kahana D E 1994 Phys. Rev. A 50 2075

    [27]

    Dionissopoulou S, Mercouris T, Lyras A, Nicolaides C A 1997 Phys. Rev. A 55 4397

  • [1]

    Macklin J J, Kmetec J D, Gordon C L 1993 Phys. Rev. Lett. 70 766

    [2]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227

    [3]

    Wang B B, Li X F, Gao L H, Fu P M, Guo D S, Freeman R R 2001 Chin. Phys. Lett. 18 1199

    [4]

    Cormier E, Garzella D, Breger P, Agostini P, Cheriaux G, Leblanc C 2001 J. Phys. B 34 L9

    [5]

    Becker W, Grasbon F, Kopold R, Milosevic D B, Paulus G G, Walther H 2002 Advances in Atomic, Molecular, and Optical Physics 48 35

    [6]

    Grasbon F, Paulus G G, Walther H, Villoresi P, Sansone G, Stagira S, Nisoli M, Silverstri S 2003 Phys. Rev. Lett. 91 173003

    [7]

    Armstrong G S J, Parker J S, Taylor K T 2011 New. J. Phys. 13 013024

    [8]

    Paulus G G, Nicklich W, Xu H, Lambropoulos P, Walther H 1994 Phys. Rev. Lett. 72 2851

    [9]

    Toyota K, Tolstikhin O I, Morishita T, Watanabe S 2009 Phys. Rev. Lett. 103 153003

    [10]

    Telnov D A, Chu S I 2009 Phys. Rev. A 79 043421

    [11]

    Tian Y Y, Guo F M, Yang Y J, The effect of atomic potential on above threshold ionization (to be published)

    [12]

    Tong X M, Hino K, Toshima N 2008 Phys. Rev. A 74 031405(R)

    [13]

    Kling M F, Rauschenberger J, Verhoef A J, Hasovic E, Uphues T, Milosevic D B, Muller H G, Vrakking M J J 2008 New. Journal. Phys. 10 025024

    [14]

    Meckel M, Comtois D, Zeidler D, Staudte A, Pavicic D, Bandulet H C, Pepin H, Kieffer J C, Dorner R, Villeneuve D M, Corkum P B 2008 Science 320 1478

    [15]

    van der Zwan E V, Lein M 2012 Phys. Rev. Lett. 108 043004

    [16]

    Ebadi H, Keitel C H, Hatsagortsyan 2011 Phys. Rev. A 83 063418

    [17]

    Ebadi H 2012 J. Opt. Soc. Am. B 29 2503

    [18]

    Song Y, Guo F M, Li S Y, Chen J G, Zeng S L, Yang Y J 2012 Phys. Rev. A 86 033424

    [19]

    Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X, Sun J Z 2007 Chin. Phys. Lett. 24 1537

    [20]

    Chen J G, Wang R Q, Zhai Z, Chen J, Fu P M, Wang B B, Liu W M 2012 Phys. Rev. A 86 033417

    [21]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614

    [22]

    Chen J G, Yang Y J, Zeng S L, Liang H Q 2011 Phys. Rev. A 83 023401

    [23]

    Zhou Z Y, Chu S I 2011 Phys. Rev. A 83 013405

    [24]

    Landau R H 1983 Phys. Rev. C 27 2191

    [25]

    Maung K M, Kahana D E, Norbury J W 1993 Phys. Rev. D 47 1182

    [26]

    Norbury J W, Maung K M, Kahana D E 1994 Phys. Rev. A 50 2075

    [27]

    Dionissopoulou S, Mercouris T, Lyras A, Nicolaides C A 1997 Phys. Rev. A 55 4397

  • [1] 贾韫哲, 孟胜. 光激发下水体系的超快动力学. 物理学报, 2024, 73(8): 084204. doi: 10.7498/aps.73.20240047
    [2] 朱宇豪, 李瑞. 基于组态相互作用方法对AuB分子低激发态电子结构和光学跃迁性质的研究. 物理学报, 2024, 73(5): 053101. doi: 10.7498/aps.73.20231347
    [3] 冯卓, 索兵兵, 韩慧仙, 李安阳. CaSH分子高精度电子结构计算及用于激光制冷目标分子的理论分析. 物理学报, 2024, 73(2): 023301. doi: 10.7498/aps.73.20230742
    [4] 李多多, 张嵩. 五氟吡啶激发态非绝热弛豫过程中的分子结构. 物理学报, 2024, 73(4): 043101. doi: 10.7498/aps.73.20231570
    [5] 邢凤竹, 崔建坡, 王艳召, 顾建中. 激发态丰质子核的双质子发射. 物理学报, 2022, 71(6): 062301. doi: 10.7498/aps.71.20211839
    [6] 肖智磊, 全威, 许松坡, 柳晓军, 魏政荣, 陈京. 中红外激光场下阈上电离能谱中的低能结构. 物理学报, 2022, 71(23): 233208. doi: 10.7498/aps.71.20221609
    [7] 张树东, 王传航, 唐伟, 孙阳, 孙宁泽, 孙召玉, 徐慧. TiAl电子态结构的ab initio计算. 物理学报, 2019, 68(24): 243101. doi: 10.7498/aps.68.20191341
    [8] 张锦芳, 任雅娜, 王军民, 杨保东. 铯原子激发态双色偏振光谱. 物理学报, 2019, 68(11): 113201. doi: 10.7498/aps.68.20181872
    [9] 郭丽, 韩申生, 陈京. 利用类维格纳分布函数方法研究阈上电离. 物理学报, 2016, 65(22): 223203. doi: 10.7498/aps.65.223203
    [10] 赵翠兰, 王丽丽, 赵丽丽. 有限深抛物势量子盘中极化子的激发态性质. 物理学报, 2015, 64(18): 186301. doi: 10.7498/aps.64.186301
    [11] 刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰. GeO分子激发态的电子结构和跃迁性质的组态相互作用方法研究. 物理学报, 2015, 64(12): 123101. doi: 10.7498/aps.64.123101
    [12] 王品懿, 贾欣燕, 樊代和, 陈京. 不同波长下氩原子高阶阈上电离的类共振增强结构. 物理学报, 2015, 64(14): 143201. doi: 10.7498/aps.64.143201
    [13] 崔鑫, 李苏宇, 郭福明, 田原野, 陈基根, 曾思良, 杨玉军. 高频激光脉冲作用下原子的光子和光电子发射. 物理学报, 2015, 64(4): 043201. doi: 10.7498/aps.64.043201
    [14] 曹欣伟, 任杨, 刘慧, 李姝丽. 强外电场作用下BN分子的结构与激发特性. 物理学报, 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [15] 田原野, 魏珊珊, 郭福明, 李苏宇, 杨玉军. 共振条件下载波包络相位效应对阈上电离谱的影响. 物理学报, 2013, 62(15): 153202. doi: 10.7498/aps.62.153202
    [16] 田原野, 郭福明, 杨玉军. 原子势对阈上电离平台的影响. 物理学报, 2013, 62(7): 073202. doi: 10.7498/aps.62.073202
    [17] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质. 物理学报, 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [18] 周业宏, 蔡绍洪. 氯乙烯在外电场下的激发态结构研究. 物理学报, 2010, 59(11): 7749-7755. doi: 10.7498/aps.59.7749
    [19] 魏 群, 杨子元, 王参军, 许启明. 轴对称晶场中d3离子激发态对4A2基态自旋哈密顿参量的影响. 物理学报, 2007, 56(1): 507-511. doi: 10.7498/aps.56.507
    [20] 汤乃云, 陈效双, 陆 卫. 尺寸分布对量子点激发态发光性质的影响. 物理学报, 2005, 54(12): 5855-5860. doi: 10.7498/aps.54.5855
计量
  • 文章访问数:  6823
  • PDF下载量:  424
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-14
  • 修回日期:  2013-02-26
  • 刊出日期:  2013-06-05

/

返回文章
返回