搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高频激光脉冲作用下原子的光子和光电子发射

崔鑫 李苏宇 郭福明 田原野 陈基根 曾思良 杨玉军

引用本文:
Citation:

高频激光脉冲作用下原子的光子和光电子发射

崔鑫, 李苏宇, 郭福明, 田原野, 陈基根, 曾思良, 杨玉军

Photon and photoelectron emission of the atom under the action of high-frequency laser pulse

Cui Xin, Li Su-Yu, Guo Fu-Ming, Tian Yuan-Ye, Chen Ji-Gen, Zeng Si-Liang, Yang Yu-Jun
PDF
导出引用
  • 通过数值求解含时薛定谔方程, 研究了原子在高频激光作用下的电离概率、光电子谱和谐波发射谱. 研究发现, 随着入射激光强度的增加, 原子的电离概率逐渐增加, 达到最大后下降, 其光电子发射谱和高次谐波发射谱均由单峰结构变成多峰. 而通过对谐波发射谱的时间-频率分析发现, 在电离抑制区域, 脉冲的峰值附近谐波受到抑制, 谐波发射主要发生在上升沿和下降沿, 二者的干涉效应产生了谐波的多峰值结构. 利用光电子发射谱和谐波发射谱随入射激光强度的改变规律, 可以实现对引起原子电离抑制的激光强度进行诊断.
    By numerically solving the time-dependent Schrdinger equation, we investigate the ionization probability, photoelectron spectrum, and harmonic emission spectrum of the atom under the action of high-frequency laser pulses. It is found that with the increase of incident laser pulse intensity, the ionization probability of the atom first increases to a maximum value gradually and then decreases, and in this process, both the photoelectron spectrum and high-order harmonic generation spectrum change from a single-peak structure to a multi-peak one. Through the time-frequency analysis of the harmonic emission spectrum, we also find that the harmonic emission is suppressed around the pulse peak, and it occurs at the rising edge and the falling edge, which interfere with each other, thus forming the multi-peak structure. Utilizing the laws of the changes of photoelectron and harmonic spectra with incident laser pulse intensity, we can diagnose the laser intensity at which the atomic ionization suppression occurs.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2013CB922200)、国家自然科学基金(批准号: 11274141, 11034003, 11304116, 11274001, 11247024)和吉林省基础研究计划基金(批准号: 20140101168JC)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB922200), the National Natural Science Foundation of China (Grant Nos. 11274141, 11034003, 11304116, 11274001, 11247024), and the Jilin Provincial Research Foundation for Basic Research, China (Grant No. 20140101168JC).
    [1]

    Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mcke O D, Pugzlys A, Baltuška A, Shim B, Schrauch S E, Gaeta A, Hernández-García C, Plajs L, Becker A, Jaron-Backer A, Murnane M M, Kapteyn H C 2012 Science 336 1287

    [2]

    Spielmann C, Burnett N H, Sartania S, Koppitsch R, Schnrer M, Kan C, Lenzner M, Wobrauschek P, Krausz F 1997 Science 278 661

    [3]

    Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, Agostini P 2001 Science 292 1689

    [4]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [5]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614

    [6]

    Ackermann W, Asova G, Ayvazyan V, Azima A, Baboi N, Bahr J, Balandin V 2007 Nat. Photon. 1 336

    [7]

    Du H C, Wen Y Z, Wang X S, Hu B T 2014 Chin. Phys. B 23 033202

    [8]

    Macklin J J, Kmetec J D, Gordon C L 1993 Phys. Rev. Lett. 70 766

    [9]

    Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127

    [10]

    Pont M, Gavrila M 1990 Phys. Rev. Lett. 65 2362

    [11]

    Kulander K C, Schafer K J, Krause J L 1991 Phys. Rev. Lett. 66 2601

    [12]

    Dörr M, Potvliege R M, Proulx D, Shakeshaft R 1991 Phys. Rev. A 43 3729

    [13]

    Wei S S, Li S Y, Guo F M, Yang Y J, Wang B B 2013 Phys. Rev. A 87 063418

    [14]

    Zhou Z Y, Chu S I 2011 Phys. Rev. A 83 013405

    [15]

    Tian Y Y, Guo F M, Zeng S L, Yang Y J 2013 Acta Phys. Sin. 62 113201 (in Chinese) [田原野, 郭福明, 曾思良, 杨玉军 2013 物理学报 62 113201]

    [16]

    Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014 Chin. Phys. B 23 053202

    [17]

    Dionissopoulou S, Mercouris T, Lyras A, Nicolaides C A 1997 Phys. Rev. A 55 4397

    [18]

    Yang Y J, Chen G, Chen J G, Zhu Q R 2004 Chin. Phys. Lett. 21 652

    [19]

    Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X, Sun J Z 2007 Chin. Phys. Lett. 24 1537

    [20]

    Chen J G, Zeng S L, Yang Y J 2010 Phys. Rev. A 82 043401

    [21]

    Chen J G, Yang Y J, Zeng S L, Liang H Q 2011 Phys. Rev. A 83 023401

    [22]

    Eberly J H, Kulander K C 1993 Science 262 1229

    [23]

    Gavrila M 2002 J. Phys. B 35 R147

    [24]

    Su Q, Eberly J H 1991 Phys. Rev. A 43 2474

    [25]

    Protopapas M, Lappas D G, Knight P L 1997 Phys. Rev. Lett. 79 4550

    [26]

    Dondera M, Muller H G, Gavrila M 2002 Phys. Rev. A 65 031405

    [27]

    Ebadi H 2012 J. Opt. Soc. Am. B 29 2503

    [28]

    de Boer M P, Hoogenraad J H, Vrijen R B, Noordam L D, Muller H G 1993 Phys. Rev. Lett. 71 3263

    [29]

    Piraux B, Potvliege R M 1998 Phys. Rev. A 57 5009

    [30]

    Sørngård S A, Askeland S, Nepstad R, Førre M 2011 Phys. Rev. A 83 033414

    [31]

    Birkeland T, Nepstad R, Førre M 2010 Phys. Rev. Lett. 104 163002

    [32]

    Popov A M, Tikhonova O V, Volkova E A 2003 J. Phys. B 36 R125

    [33]

    Telnov D A, Chu S I 2009 Phys. Rev. A 79 043421

    [34]

    Telnov D A, Chu S I 1995 J. Phys. B 28 2407

    [35]

    Demekhin P V, Cederbaum L S 2012 Phys. Rev. Lett. 108 253001

    [36]

    Yu C, Fu N, Zhang G Z, Yao J Q 2013 Phys. Rev. A 87 043405

  • [1]

    Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mcke O D, Pugzlys A, Baltuška A, Shim B, Schrauch S E, Gaeta A, Hernández-García C, Plajs L, Becker A, Jaron-Backer A, Murnane M M, Kapteyn H C 2012 Science 336 1287

    [2]

    Spielmann C, Burnett N H, Sartania S, Koppitsch R, Schnrer M, Kan C, Lenzner M, Wobrauschek P, Krausz F 1997 Science 278 661

    [3]

    Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, Agostini P 2001 Science 292 1689

    [4]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [5]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614

    [6]

    Ackermann W, Asova G, Ayvazyan V, Azima A, Baboi N, Bahr J, Balandin V 2007 Nat. Photon. 1 336

    [7]

    Du H C, Wen Y Z, Wang X S, Hu B T 2014 Chin. Phys. B 23 033202

    [8]

    Macklin J J, Kmetec J D, Gordon C L 1993 Phys. Rev. Lett. 70 766

    [9]

    Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127

    [10]

    Pont M, Gavrila M 1990 Phys. Rev. Lett. 65 2362

    [11]

    Kulander K C, Schafer K J, Krause J L 1991 Phys. Rev. Lett. 66 2601

    [12]

    Dörr M, Potvliege R M, Proulx D, Shakeshaft R 1991 Phys. Rev. A 43 3729

    [13]

    Wei S S, Li S Y, Guo F M, Yang Y J, Wang B B 2013 Phys. Rev. A 87 063418

    [14]

    Zhou Z Y, Chu S I 2011 Phys. Rev. A 83 013405

    [15]

    Tian Y Y, Guo F M, Zeng S L, Yang Y J 2013 Acta Phys. Sin. 62 113201 (in Chinese) [田原野, 郭福明, 曾思良, 杨玉军 2013 物理学报 62 113201]

    [16]

    Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014 Chin. Phys. B 23 053202

    [17]

    Dionissopoulou S, Mercouris T, Lyras A, Nicolaides C A 1997 Phys. Rev. A 55 4397

    [18]

    Yang Y J, Chen G, Chen J G, Zhu Q R 2004 Chin. Phys. Lett. 21 652

    [19]

    Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X, Sun J Z 2007 Chin. Phys. Lett. 24 1537

    [20]

    Chen J G, Zeng S L, Yang Y J 2010 Phys. Rev. A 82 043401

    [21]

    Chen J G, Yang Y J, Zeng S L, Liang H Q 2011 Phys. Rev. A 83 023401

    [22]

    Eberly J H, Kulander K C 1993 Science 262 1229

    [23]

    Gavrila M 2002 J. Phys. B 35 R147

    [24]

    Su Q, Eberly J H 1991 Phys. Rev. A 43 2474

    [25]

    Protopapas M, Lappas D G, Knight P L 1997 Phys. Rev. Lett. 79 4550

    [26]

    Dondera M, Muller H G, Gavrila M 2002 Phys. Rev. A 65 031405

    [27]

    Ebadi H 2012 J. Opt. Soc. Am. B 29 2503

    [28]

    de Boer M P, Hoogenraad J H, Vrijen R B, Noordam L D, Muller H G 1993 Phys. Rev. Lett. 71 3263

    [29]

    Piraux B, Potvliege R M 1998 Phys. Rev. A 57 5009

    [30]

    Sørngård S A, Askeland S, Nepstad R, Førre M 2011 Phys. Rev. A 83 033414

    [31]

    Birkeland T, Nepstad R, Førre M 2010 Phys. Rev. Lett. 104 163002

    [32]

    Popov A M, Tikhonova O V, Volkova E A 2003 J. Phys. B 36 R125

    [33]

    Telnov D A, Chu S I 2009 Phys. Rev. A 79 043421

    [34]

    Telnov D A, Chu S I 1995 J. Phys. B 28 2407

    [35]

    Demekhin P V, Cederbaum L S 2012 Phys. Rev. Lett. 108 253001

    [36]

    Yu C, Fu N, Zhang G Z, Yao J Q 2013 Phys. Rev. A 87 043405

计量
  • 文章访问数:  2179
  • PDF下载量:  695
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-27
  • 修回日期:  2014-09-24
  • 刊出日期:  2015-02-05

高频激光脉冲作用下原子的光子和光电子发射

  • 1. 吉林大学原子与分子物理研究所, 长春 130012;
  • 2. 台州学院物理与电子工程学院物理与材料工程系, 台州 318000;
  • 3. 北京应用物理与计算数学研究所高能量密度物性数据中心, 北京 100088
    基金项目: 国家重点基础研究发展计划(批准号: 2013CB922200)、国家自然科学基金(批准号: 11274141, 11034003, 11304116, 11274001, 11247024)和吉林省基础研究计划基金(批准号: 20140101168JC)资助的课题.

摘要: 通过数值求解含时薛定谔方程, 研究了原子在高频激光作用下的电离概率、光电子谱和谐波发射谱. 研究发现, 随着入射激光强度的增加, 原子的电离概率逐渐增加, 达到最大后下降, 其光电子发射谱和高次谐波发射谱均由单峰结构变成多峰. 而通过对谐波发射谱的时间-频率分析发现, 在电离抑制区域, 脉冲的峰值附近谐波受到抑制, 谐波发射主要发生在上升沿和下降沿, 二者的干涉效应产生了谐波的多峰值结构. 利用光电子发射谱和谐波发射谱随入射激光强度的改变规律, 可以实现对引起原子电离抑制的激光强度进行诊断.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回