搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaSH分子高精度电子结构计算及用于激光制冷目标分子的理论分析

冯卓 索兵兵 韩慧仙 李安阳

引用本文:
Citation:

CaSH分子高精度电子结构计算及用于激光制冷目标分子的理论分析

冯卓, 索兵兵, 韩慧仙, 李安阳

High-precision electron structure calculation of CaSH molecules and theoretical analysis of its application to laser-cooled target molecules

Feng Zhuo, Suo Bing-Bing, Han Hui-Xian, Li An-Yang
PDF
HTML
导出引用
  • 作为非对称多原子分子制冷的一个重要目标分子, CaSH的冷却有望打破双原子分子及线性三原子分子在激光冷却中的技术局限. 本文使用高精度的EA-EOM-CCSD (electron attachment equation-of-motion coupled cluster singles and doubles)方法, 通过cc-pVXZ/cc-pCVXZ (X = T, Q)系列基组外推至基组极限, 得到了CaSH基态和3个最低激发态精确的几何结构及基态到激发态的跃迁能. 其中, 基态$ {\tilde{{\mathrm{X}}}}^{2}{{\mathrm{A}}}' $几何结构参数分别为RCaS= 2.564 Å; RSH= 1.357 Å; CaSH= 91.0°; 从$ {\tilde{{\mathrm{X}}}}^{2}{{\mathrm{A}}}^{\prime} $$ {\tilde{{\mathrm{A}}}}^{2}{{\mathrm{A}}}^{\prime} $, $ {\tilde{{\mathrm{B}}}}^{2}{{\mathrm{A}}}^{{\prime\prime} } $$ {\tilde{{\mathrm{C}}}}^{2}{{\mathrm{A}}}^{\prime} $的垂直激发能分别为1.898, 1.945和1.966 eV, 与已有实验符合得很好. 进一步, 在3ζ级别基组上, 计算了该分子4个最低电子态的势能面, 并通过求解核运动方程给出CaS键伸缩、CaSH弯曲两个振动模的频率. 最后, 理论计算给出的$ {\tilde{{\mathrm{X}}}}^{2}{{\mathrm{A}}}^{\prime} ({\mathrm{0, 0}}, 0) $态到激发态$ {\tilde{{\mathrm{A}}}}^{2}{{\mathrm{A}}}^{\prime} ({\mathrm{0, 0}}, 0) $, $ {\tilde{{\mathrm{B}}}}^{2}{{\mathrm{A}}}^{{\prime\prime} }({\mathrm{0, 0}}, 0) $$ {\tilde{{\mathrm{C}}}}^{2}{{\mathrm{A}}}^{\prime} ({\mathrm{0, 0}}, 0) $跃迁的Frank-Condon (FC)因子分别为0.9268, 0.9958和0.9248. 结合Frank-Condon因子和激发态寿命分析, 本文给出了可能用于CaSH冷却的光学循环, 为CaSH的激光冷却提供了理论参考.
    The CaSH molecule is an important target in the field of laser cooling non-linear polyatomic molecules. Successful cooling of such molecules marks a breakthrough of the technical limitations of laser cooling diatomic and linear triatomic molecules. To identify the possible optical cycle in cooling CaSH, precise geometries of the CaSH ground state and the three lowest excited states, along with their excitation energy, are determined by utilizing the EA-EOM-CCSD (electron attachment equation-of-motion coupled cluster singles and doubles) method, in combination with energy extrapolation using cc-pVXZ/cc-pCVXZ (X = T, Q ) serial basis sets. Geometric parameters of the ground state $ {\tilde{{\mathrm{X}}}}^{2}{{\mathrm{A}}}^{\prime} $ are found to be RCaS= 2.564 Å, RSH= 1.357 Å, andCaSH= 91.0°. Additionally, the equilibrium geometries of three excited states are also obtained. The $ {\tilde{{\mathrm{B}}}}^{2}{{\mathrm{A}}}^{\prime\prime} $ state has a similar equilibrium structure to the ground state, while the $ {\tilde{{\mathrm{A}}}}^{2}{{\mathrm{A}}}^{\prime} $ and $ {\tilde{{\mathrm{C}}}}^{2}{{\mathrm{A}}}^{\prime} $ states exhibit significant conformer distortions. Specifically, the CaS bond of the $ {\tilde{{\mathrm{A}}}}^{2}{{\mathrm{A}}}^{\prime} $ state and $ {\tilde{{\mathrm{C}}}}^{2}{{\mathrm{A}}}^{\prime} $ state tend to contract, and the CaSH angel bends by 5° relative to the ground state. The vertical excitation energy from the ground state to $ {\tilde{{\mathrm{A}}}}^{2}{{\mathrm{A}}}^{\prime} $, $ {\tilde{{\mathrm{B}}}}^{2}{{\mathrm{A}}}^{\prime\prime} $ and $ {\tilde{{\mathrm{C}}}}^{2}{{\mathrm{A}}}^{\prime} $ are of 1.898, 1.945 and 1.966 eV, respectively, which are in good agreement with the previous experimental results. Moreover, the potential energy surfaces of the four lowest electronic states of CaSH are calculated by EA-EOM-CCSD with 3ζ level of basis sets. The nuclear equations of motion are solved to obtain the vibrational frequencies of the CaS bond stretching and CaSH bending. The vibrational frequencies of the (0,1,0) mode and the CaS stretching frequency of four states are 316 cm–1, 315 cm–1, 331 cm–1 and 325 cm–1, which are in close agreement with the available experimental results. The frequencies of the CaSH bending mode are presented for the first time, with the values of 357 cm–1, 396 cm–1, 384 cm–1, 411 cm–1 for the $ {\tilde{{\mathrm{X}}}}^{2}{{\mathrm{A}}}^{\prime} $, $ {\tilde{{\mathrm{A}}}}^{2}{{\mathrm{A}}}^{\prime} $, $ {\tilde{{\mathrm{B}}}}^{2}{{\mathrm{A}}}^{\prime\prime} $ and $ {\tilde{{\mathrm{C}}}}^{2}{{\mathrm{A}}}^{\prime} $ states, respectively. Theoretical calculations give the Frank-Condon factors of 0.9268, 0.9958 and 0.9248 for the $ {\tilde{{\mathrm{X}}}}^{2}{{\mathrm{A}}}^{\prime} ({\mathrm{0,0}},0) $ to $ {\tilde{{\mathrm{A}}}}^{2}{{\mathrm{A}}}^{\prime} ({\mathrm{0,0}},0) $, $ {\tilde{{\mathrm{B}}}}^{2}{{\mathrm{A}}}^{{{\prime} }{{\prime} }}({\mathrm{0,0}},0) $ and $ {\tilde{{\mathrm{C}}}}^{2}{{\mathrm{A}}}^{\prime} ({\mathrm{0,0}},0) $ transitions. All three excited states are the bright states with considerable oscillator strength relative to the ground state. Based on the Frank-Condon factor and lifetime of excited states, the $ {{\tilde{{\mathrm{X}}}}^{2}{{\mathrm{A}}}^{\prime} ({\mathrm{0,0}},0)\to \tilde{{\mathrm{B}}}}^{2}{{\mathrm{A}}}^{{{\prime} }{{\prime} }}({\mathrm{0,0}},0) $ transition is regarded as the main cooling cycle for the CaSH molecule. The corresponding pump light wavelength is 678 nm. By exciting the vibrational excited states (0,1,0) and (0,0,1) of the $ {\tilde{{\mathrm{X}}}}^{2}{{\mathrm{A}}}^{\prime} $ state to $ {\tilde{{\mathrm{A}}}}^{2}{{\mathrm{A}}}^{\prime} ({\mathrm{0,0}},0) $ using lasers at 666 nm and 668 nm, respectively, the optical cooling branch ratio of CaSH is expected to exceed 0.9998.
      通信作者: 索兵兵, bsuo@nwu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 21873077)和陕西省自然科学基础研究计划 (批准号: 2021JM-311) 资助的课题.
      Corresponding author: Suo Bing-Bing, bsuo@nwu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21873077) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2021JM-311).
    [1]

    Balakrishnan N 2016 J. Chem. Phys. 145 150901Google Scholar

    [2]

    Wu Y, Bao W S, Cao S R, et al. 2021 Phys. Rev. Lett. 127 180501Google Scholar

    [3]

    Andreev V, Ang D G, Demille D, Doyle J M, Gabrielse G, Haefner J, Hutzler N R, Lasner Z, Meisenhelder C, O'Leary B R, Panda C D, West A D, West E P, Wu X 2018 Nature 562 355Google Scholar

    [4]

    Baron J, Campbell W C, DeMille D, Doyle J M, Gabrielse G, Gurevich Y V, Hess P W, Hutzler N R, Kirilov E, Kozyryev I, O’Leary B R, Panda C D, Parsons M F, Petrik E S, Spaun B, Vutha A C, West A D 2014 Science 343 269Google Scholar

    [5]

    Barry J F, Mccarron D J, Norrgard E B, Steinecker M H, Demille D 2014 Nature 512 286Google Scholar

    [6]

    Norrgard E B, McCarron D J, Steinecker M H, Tarbutt M R, DeMille D 2016 Phys. Rev. Lett. 116 063004Google Scholar

    [7]

    Truppe S, Williams H J, Fitch N J, Hambach M, Wall T E, Hinds E A, Sauer B E, Tarbutt M R 2017 New J. Phys. 19 022001Google Scholar

    [8]

    Kozyryev I, Baum L, Matsuda K, Augenbraun B L, Anderegg L, Sedlack A P, Doyle J M 2017 Phys. Rev. Lett. 118 173201Google Scholar

    [9]

    Augenbraun B L, Lasner Z D, Frenett A, Sawaoka H, Miller C, Steimle T C, Doyle J M 2020 New J. Phys. 22 022003Google Scholar

    [10]

    Baranov M A 2008 Phys. Rep. 464 71Google Scholar

    [11]

    Ni K K, Ospelkaus S, De Miranda M H, Hg M, Pe'Er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S, Ye J 2008 Science 322 231Google Scholar

    [12]

    Shuman E S, Barry J F, DeMille D 2010 Nature 467 820Google Scholar

    [13]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [14]

    Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E, Tarbutt M, Sauer B 2014 Phys. Rev. A 89 053416Google Scholar

    [15]

    Gao Y, Wan M 2017 Phys. Chem. Chem. Phys. 19 5519Google Scholar

    [16]

    陈涛, 颜波 2019 物理学报 68 043701Google Scholar

    Chen T, Yan B 2019 Acta Phys. Sin. 68 043701Google Scholar

    [17]

    Wells N, Lane I C 2011 Phys. Chem. Chem. Phys. 13 19018Google Scholar

    [18]

    Li D, Fu M, Ma H, Bian W, Du Z, Chen C A 2020 Front. Chem. 8 20

    [19]

    Li D, Cao J, Ma H, Bian W 2022 Phys. Chem. Chem. Phys. 24 10114

    [20]

    Ivanov M V, Bangerter F H, Krylov A I 2019 Phys. Chem. Chem. Phys. 21 19447Google Scholar

    [21]

    Augenbraun B L, Doyle J M, Zelevinsky T, Kozyryev I 2020 Phys. Rev. X 10 031022Google Scholar

    [22]

    Liu L, Yang C L, Sun Z P, Wang M S, Ma X G 2021 Phys. Chem. Chem. Phys. 23 2392Google Scholar

    [23]

    Fernando W T M L, Ram R S, O'Brien L C, Bernath P F 1991 J. Phys. Chem. 95 2665Google Scholar

    [24]

    Jarman C N, Bernath P F 1993 J. Chem. Phys. 98 6697Google Scholar

    [25]

    Ortiz J V 1990 Chem. Phys. Lett. 169 116Google Scholar

    [26]

    Scurlock C T, Henderson T, Bosely S, Jung K Y, Steimle T C 1994 J. Chem. Phys. 100 5481Google Scholar

    [27]

    Taleb-Bendiad A, Scappini F, Amano T, Watson J K 1996 J. Chem. Phys. 104 7431Google Scholar

    [28]

    Sheridan P M, Dick M J, Wang J G, Bernath P F 2007 Mol. Phys. 105 569Google Scholar

    [29]

    Nooijen M, Bartlett R J 1995 J. Chem. Phys. 102 3629Google Scholar

    [30]

    Pritchard B P, Altarawy D, Didier B T, Gibson T D, Windus T L 2019 J. Chem. Inf. Model. 59 4814Google Scholar

    [31]

    Koput J, Peterson K A 2002 J. Chem. Phys. 116 9255Google Scholar

    [32]

    Woon D E, Dunning T H 1995 J. Chem. Phys. 100 4572Google Scholar

    [33]

    Dunning T H 1989 J. Chem. Phys. 90 1007Google Scholar

    [34]

    Müller T, Dallos M, Lischka H, Dubrovay Z, Szalay P G 2001 Theor. Chem. Acc. 105 227Google Scholar

    [35]

    Lanczos C 1950 J. Res. Nat. Bur. Stand. 45 255Google Scholar

    [36]

    Goldfield E M, Gray S K, Harding L B 1993 J. Chem. Phys. 99 5812Google Scholar

    [37]

    Light J C, Carrington Jr T 2000 Adv. Chem. Phys. 114 263Google Scholar

    [38]

    Lill J V, Parker G A, Light J C 1986 J. Chem. Phys. 85 900Google Scholar

    [39]

    Liu W J, Hong Y G, Dai D D, Li L M, Dolg M 1997 Theor. Chem. Acc. 96 75Google Scholar

    [40]

    Zhang Y, Suo B B, Wang Z K, Zhang N, Li Z D, Lei Y B, Zou W L, Gao J, Peng D L, Pu Z C, Sun Q M, Wang F, Ma Y T, Wang X P, Liu W J 2020 J. Chem. Phys. 152 064113Google Scholar

    [41]

    Yang D D, Wang F, Guo J W 2012 Chem. Phys. Lett. 531 236Google Scholar

    [42]

    Tu Z Y, Wang F, Li X Y 2012 J. Chem. Phys. 136 174102Google Scholar

    [43]

    Wang Z F, Hu S, Wang F, Guo J W 2015 J. Chem. Phys. 142 144109Google Scholar

    [44]

    Cao Z L, Li Z D, Wang F, Liu W J 2017 Phys. Chem. Chem. Phys. 19 3713Google Scholar

    [45]

    李永红, 李俊峰, 王连宾, 张敬来 2008 河南大学学报(自然科学版) 38 4

    Li Y H, Li J F, Wang L B, Zhang J L 2008 J. Henan Univ. (Nat. Sci.) 38 4

    [46]

    Baum L, Vilas N B, Hallas C, Augenbraun B L, Raval S, Mitra D, Doyle J M 2020 Phys. Rev. Lett. 124 133201Google Scholar

    [47]

    Kozyryev I, Baum L, Aldridge L, Yu P, Eyler E E, Doyle J M 2018 Phys. Rev. Lett. 120 063205Google Scholar

    [48]

    Franck-Condon factors in the harmonic approximation , Wójcik P, Gozem S, Mozhayskiy V, Krylov A I. http:// iopenshell.usc.edu/downloads [2023-5-3

  • 图 1  CaSH分子前线轨道图 (a) $ 15{{\mathrm{a}}}^{\prime} ; $ (b) $ 16{{\mathrm{a}}}^{\prime} ; $ (c) $ 5{{\mathrm{a}}}^{{{\prime} }{{\prime} }}; $ (d) $ 17{\mathrm{a}}^{{\prime} } $

    Fig. 1.  Frontier orbital diagram of the CaSH molecule: (a) $ 15{{\mathrm{a}}}^{\prime} ; $ (b) $ 16{{\mathrm{a}}}^{\prime} ; $ (c) $ 5{{\mathrm{a}}}^{{{\prime} }{{\prime} }}; $ (d) $ 17{\mathrm{a}}^{{\prime} } $ .

    图 2  CaSH激光冷却光学循环示意图, 实线代表激发光, 虚线为自发辐射通道

    Fig. 2.  Schematic diagram of optical cycle of laser cooling of CaSH, solid lines represent the excitation light, dash lines are spontaneous emission channels.

    表 1  CaSH分子基态和3个低能级激发态的平衡结构

    Table 1.  Equilibrium structures of the ground state and three low-lying excited states of the CaSH molecule.

    State r0 (Ca-S)/Å r0 (S—H)/Å θ (Ca—S—H)/(°) Method Ref.
    $ {\tilde{{\mathrm{X}}}}^{2}{{\mathrm{A}}}^{\prime} $ 2.557 1.338 91.0 EA-EOM-CCSD This work
    2.614 1.346 100.0 MP2 Calc.[23]
    2.607 1.339 97.1 Calc.[25]
    2.647 1.347 93.1 CCSD(T) Calc.[24]
    2.560 1.346 96.6 Expt.[22]
    2.564 1.357 91.0 Expt.[26]
    $ {\tilde{{\mathrm{A}}}}^{2}{{\mathrm{A}}}^{\prime} $ 2.528 1.343 86.0 EA-EOM-CCSD This work
    2.513 1.346 94.6 Expt.[22]
    2.517 1.357 89.1 Expt.[26]
    $ {\tilde{{\mathrm{B}}}}^{2}{{\mathrm{A}}}^{\prime\prime} $ 2.554 1.338 91.0 EA-EOM-CCSD This work
    2.550 1.357 89.1 Expt.[26]
    $ {\tilde{{\mathrm{C}}}}^{2}{{\mathrm{A}}}^{\prime} $ 2.525 1.345 86.0 EA-EOM-CCSD This work
    2.562 1.357 91.0 Expt.[26]
    下载: 导出CSV

    表 2  CaSH 基态到3个低能级激发态激发能的对比

    Table 2.  Comparison of excitation energies from the ground state to three low-lying excited states of the CaSH.

    $ {\tilde{{\mathrm{X}}}}^{2}{{\mathrm{A}}}^{\prime} \to {\tilde{{\mathrm{A}}}}^{2}{{\mathrm{A}}}^{\prime} $ $ {\tilde{{\mathrm{X}}}}^{2}{{\mathrm{A}}}^{\prime} \to {\tilde{{\mathrm{B}}}}^{2}{{\mathrm{A}}}^{\prime\prime} $ $ {\tilde{{\mathrm{X}}}}^{2}{{\mathrm{A}}}^{\prime} \to {\tilde{{\mathrm{C}}}}^{2}{{\mathrm{A}}}^{\prime} $
    EA-EOM-CCSD VEE a) 1.945 2.000 2.093
    1.915 1.966 2.016
    1.898 1.945 1.966 Basis set limit
    AEE b) 1.894 1.944 1.961 Basis set limit
    SA-CASSCF VEE 1.884 1.937 2.216
    f c) 0.2628 0.2589 0.1621
    Expt. 1.907 1.966 1.993 Ref. [26]
    1.905 1.960 1.987 Ref. [21]
    Calc. 1.860 1.930 2.110 Ref. [23]
    VEE a) 2.000 2.060 2.330 Ref. [43]
    注: a) 垂直激发能; b)绝热激发能; c) 偶极跃迁振子强度.
    下载: 导出CSV

    表 3  CaSH分子Ca—S键伸缩和CaSH弯曲振动模式的频率(cm–1)a)

    Table 3.  Frequencies of the Ca—S stretching and CaSH bending vibrational modes of the CaSH molecule (cm–1) a).

    $ {\tilde{{\mathrm{X}}}}^{2}{{\mathrm{A}}}^{\prime} $ $ {\tilde{{\mathrm{A}}}}^{2}{{\mathrm{A}}}^{\prime} $ $ {\tilde{{\mathrm{B}}}}^{2}{{\mathrm{A}}}^{\prime\prime} $ $ {\tilde{{\mathrm{C}}}}^{2}{{\mathrm{A}}}^{\prime} $
    (0, 1, 0) 316 (326) b) 315 (318) b) 331 (320) b) 326 (312) b)
    (0, 0, 1) 357 396 384 411
    (0, 2, 0) 634 632 661 653
    (0, 1, 1) 681 724 722 742
    (0, 0, 2) 704 785 760 808
    (0, 3, 0) 953 949 990 981
    (0, 2, 1) 1007 1051 1058 1074
    (0, 1, 2) 1034 1122 1102 1145
    (0, 0, 3) 1039 1167 1130 1188
    (0, 4, 0) 1271 1266 1318 1308
    注: a)(0, 1, 0)CaS 伸缩振动模式, (0, 0, 1)CaSH键角弯曲振动模式; b) 括号内值为实验值[23].
    下载: 导出CSV

    表 4  CaSH分子激发态$ {\tilde{{\mathrm{A}}}}^{2}{{\mathrm{A}}}^{\prime} $, $ {\tilde{{\mathrm{B}}}}^{2}{{\mathrm{A}}}^{\prime\prime} $和$ {\tilde{{\mathrm{C}}}}^{2}{{\mathrm{A}}}^{\prime} $到基态$ {\tilde{{\mathrm{X}}}}^{2}{{\mathrm{A}}}^{\prime} $的跃迁FC因子

    Table 4.  The Frank-Condon factor of the excited states $ {\tilde{{\mathrm{A}}}}^{2}{{\mathrm{A}}}^{\prime} $, $ {\tilde{{\mathrm{B}}}}^{2}{{\mathrm{A}}}^{\prime\prime} $ and $ {\tilde{{\mathrm{C}}}}^{2}{{\mathrm{A}}}^{\prime} $ transition to ground state $ {\tilde{{\mathrm{X}}}}^{2}{{\mathrm{A}}}^{\prime} $ of the CaSH molecule.

    $ {\tilde{{\mathrm{X}}}}^{2}{{\mathrm{A}}}^{\prime} {\to} {\tilde{{\mathrm{A}}}}^{2}{{\mathrm{A}}}^{\prime} $ $ {\tilde{{\mathrm{X}}}}^{2}{{\mathrm{A}}}^{\prime} {\to} {\tilde{{\mathrm{B}}}}^{2}{{\mathrm{A}}}^{\prime\prime} $ $ {\tilde{{\mathrm{X}}}}^{2}{{\mathrm{A}}}^{\prime} {\to} {\tilde{{\mathrm{C}}}}^{2}{{\mathrm{A}}}^{\prime} $
    (0, 0, 0) →
    (0, 0, 0)
    0.9268 0.9958 0.9248
    (0, 1, 0) →
    (0, 0, 0)
    0.0627 0.0011 0.0626
    (0, 0, 1) →
    (0, 0, 0)
    0.0094 0.0002 0.0114
    (0, 1, 1) →
    (0, 0, 0)
    0.0006 2.4×10–7 0.0008
    (0, 2, 0) →
    (0, 0, 0)
    0.0001 0.0006 2.2×10–5
    (0, 0, 2) →
    (0, 0, 0)
    6.0×10–5 0.0003 5×10–6
    下载: 导出CSV
  • [1]

    Balakrishnan N 2016 J. Chem. Phys. 145 150901Google Scholar

    [2]

    Wu Y, Bao W S, Cao S R, et al. 2021 Phys. Rev. Lett. 127 180501Google Scholar

    [3]

    Andreev V, Ang D G, Demille D, Doyle J M, Gabrielse G, Haefner J, Hutzler N R, Lasner Z, Meisenhelder C, O'Leary B R, Panda C D, West A D, West E P, Wu X 2018 Nature 562 355Google Scholar

    [4]

    Baron J, Campbell W C, DeMille D, Doyle J M, Gabrielse G, Gurevich Y V, Hess P W, Hutzler N R, Kirilov E, Kozyryev I, O’Leary B R, Panda C D, Parsons M F, Petrik E S, Spaun B, Vutha A C, West A D 2014 Science 343 269Google Scholar

    [5]

    Barry J F, Mccarron D J, Norrgard E B, Steinecker M H, Demille D 2014 Nature 512 286Google Scholar

    [6]

    Norrgard E B, McCarron D J, Steinecker M H, Tarbutt M R, DeMille D 2016 Phys. Rev. Lett. 116 063004Google Scholar

    [7]

    Truppe S, Williams H J, Fitch N J, Hambach M, Wall T E, Hinds E A, Sauer B E, Tarbutt M R 2017 New J. Phys. 19 022001Google Scholar

    [8]

    Kozyryev I, Baum L, Matsuda K, Augenbraun B L, Anderegg L, Sedlack A P, Doyle J M 2017 Phys. Rev. Lett. 118 173201Google Scholar

    [9]

    Augenbraun B L, Lasner Z D, Frenett A, Sawaoka H, Miller C, Steimle T C, Doyle J M 2020 New J. Phys. 22 022003Google Scholar

    [10]

    Baranov M A 2008 Phys. Rep. 464 71Google Scholar

    [11]

    Ni K K, Ospelkaus S, De Miranda M H, Hg M, Pe'Er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S, Ye J 2008 Science 322 231Google Scholar

    [12]

    Shuman E S, Barry J F, DeMille D 2010 Nature 467 820Google Scholar

    [13]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [14]

    Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E, Tarbutt M, Sauer B 2014 Phys. Rev. A 89 053416Google Scholar

    [15]

    Gao Y, Wan M 2017 Phys. Chem. Chem. Phys. 19 5519Google Scholar

    [16]

    陈涛, 颜波 2019 物理学报 68 043701Google Scholar

    Chen T, Yan B 2019 Acta Phys. Sin. 68 043701Google Scholar

    [17]

    Wells N, Lane I C 2011 Phys. Chem. Chem. Phys. 13 19018Google Scholar

    [18]

    Li D, Fu M, Ma H, Bian W, Du Z, Chen C A 2020 Front. Chem. 8 20

    [19]

    Li D, Cao J, Ma H, Bian W 2022 Phys. Chem. Chem. Phys. 24 10114

    [20]

    Ivanov M V, Bangerter F H, Krylov A I 2019 Phys. Chem. Chem. Phys. 21 19447Google Scholar

    [21]

    Augenbraun B L, Doyle J M, Zelevinsky T, Kozyryev I 2020 Phys. Rev. X 10 031022Google Scholar

    [22]

    Liu L, Yang C L, Sun Z P, Wang M S, Ma X G 2021 Phys. Chem. Chem. Phys. 23 2392Google Scholar

    [23]

    Fernando W T M L, Ram R S, O'Brien L C, Bernath P F 1991 J. Phys. Chem. 95 2665Google Scholar

    [24]

    Jarman C N, Bernath P F 1993 J. Chem. Phys. 98 6697Google Scholar

    [25]

    Ortiz J V 1990 Chem. Phys. Lett. 169 116Google Scholar

    [26]

    Scurlock C T, Henderson T, Bosely S, Jung K Y, Steimle T C 1994 J. Chem. Phys. 100 5481Google Scholar

    [27]

    Taleb-Bendiad A, Scappini F, Amano T, Watson J K 1996 J. Chem. Phys. 104 7431Google Scholar

    [28]

    Sheridan P M, Dick M J, Wang J G, Bernath P F 2007 Mol. Phys. 105 569Google Scholar

    [29]

    Nooijen M, Bartlett R J 1995 J. Chem. Phys. 102 3629Google Scholar

    [30]

    Pritchard B P, Altarawy D, Didier B T, Gibson T D, Windus T L 2019 J. Chem. Inf. Model. 59 4814Google Scholar

    [31]

    Koput J, Peterson K A 2002 J. Chem. Phys. 116 9255Google Scholar

    [32]

    Woon D E, Dunning T H 1995 J. Chem. Phys. 100 4572Google Scholar

    [33]

    Dunning T H 1989 J. Chem. Phys. 90 1007Google Scholar

    [34]

    Müller T, Dallos M, Lischka H, Dubrovay Z, Szalay P G 2001 Theor. Chem. Acc. 105 227Google Scholar

    [35]

    Lanczos C 1950 J. Res. Nat. Bur. Stand. 45 255Google Scholar

    [36]

    Goldfield E M, Gray S K, Harding L B 1993 J. Chem. Phys. 99 5812Google Scholar

    [37]

    Light J C, Carrington Jr T 2000 Adv. Chem. Phys. 114 263Google Scholar

    [38]

    Lill J V, Parker G A, Light J C 1986 J. Chem. Phys. 85 900Google Scholar

    [39]

    Liu W J, Hong Y G, Dai D D, Li L M, Dolg M 1997 Theor. Chem. Acc. 96 75Google Scholar

    [40]

    Zhang Y, Suo B B, Wang Z K, Zhang N, Li Z D, Lei Y B, Zou W L, Gao J, Peng D L, Pu Z C, Sun Q M, Wang F, Ma Y T, Wang X P, Liu W J 2020 J. Chem. Phys. 152 064113Google Scholar

    [41]

    Yang D D, Wang F, Guo J W 2012 Chem. Phys. Lett. 531 236Google Scholar

    [42]

    Tu Z Y, Wang F, Li X Y 2012 J. Chem. Phys. 136 174102Google Scholar

    [43]

    Wang Z F, Hu S, Wang F, Guo J W 2015 J. Chem. Phys. 142 144109Google Scholar

    [44]

    Cao Z L, Li Z D, Wang F, Liu W J 2017 Phys. Chem. Chem. Phys. 19 3713Google Scholar

    [45]

    李永红, 李俊峰, 王连宾, 张敬来 2008 河南大学学报(自然科学版) 38 4

    Li Y H, Li J F, Wang L B, Zhang J L 2008 J. Henan Univ. (Nat. Sci.) 38 4

    [46]

    Baum L, Vilas N B, Hallas C, Augenbraun B L, Raval S, Mitra D, Doyle J M 2020 Phys. Rev. Lett. 124 133201Google Scholar

    [47]

    Kozyryev I, Baum L, Aldridge L, Yu P, Eyler E E, Doyle J M 2018 Phys. Rev. Lett. 120 063205Google Scholar

    [48]

    Franck-Condon factors in the harmonic approximation , Wójcik P, Gozem S, Mozhayskiy V, Krylov A I. http:// iopenshell.usc.edu/downloads [2023-5-3

  • [1] 李多多, 张嵩. 五氟吡啶激发态非绝热弛豫过程中的分子结构. 物理学报, 2024, 73(4): 043101. doi: 10.7498/aps.73.20231570
    [2] 朱宇豪, 李瑞. 基于组态相互作用方法对AuB分子低激发态电子结构和光学跃迁性质的研究. 物理学报, 2024, 73(5): 053101. doi: 10.7498/aps.73.20231347
    [3] 邢凤竹, 崔建坡, 王艳召, 顾建中. 激发态丰质子核的双质子发射. 物理学报, 2022, 71(6): 062301. doi: 10.7498/aps.71.20211839
    [4] 尹俊豪, 杨涛, 印建平. 基于${{\bf{A}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Pi}} }}_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow }}{{\bf{X}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Sigma }}}}_{{\boldsymbol{1/2}}}$跃迁的CaH分子激光冷却光谱理论研究. 物理学报, 2021, 70(16): 163302. doi: 10.7498/aps.70.20210522
    [5] 张树东, 王传航, 唐伟, 孙阳, 孙宁泽, 孙召玉, 徐慧. TiAl电子态结构的ab initio计算. 物理学报, 2019, 68(24): 243101. doi: 10.7498/aps.68.20191341
    [6] 张锦芳, 任雅娜, 王军民, 杨保东. 铯原子激发态双色偏振光谱. 物理学报, 2019, 68(11): 113201. doi: 10.7498/aps.68.20181872
    [7] 万明杰, 李松, 金成国, 罗华锋. 激光冷却SH阴离子的理论研究. 物理学报, 2019, 68(6): 063103. doi: 10.7498/aps.68.20182039
    [8] 万明杰, 罗华锋, 袁娣, 李松. 激光冷却KCl阴离子的理论研究. 物理学报, 2019, 68(17): 173102. doi: 10.7498/aps.68.20190869
    [9] 陈涛, 颜波. 极性分子的激光冷却及囚禁技术. 物理学报, 2019, 68(4): 043701. doi: 10.7498/aps.68.20181655
    [10] 邢伟, 孙金锋, 施德恒, 朱遵略. AlH+离子5个-S态和10个态的光谱性质以及激光冷却的理论研究. 物理学报, 2018, 67(19): 193101. doi: 10.7498/aps.67.20180926
    [11] 张云光, 张华, 窦戈, 徐建刚. 激光冷却OH分子的理论研究. 物理学报, 2017, 66(23): 233101. doi: 10.7498/aps.66.233101
    [12] 赵翠兰, 王丽丽, 赵丽丽. 有限深抛物势量子盘中极化子的激发态性质. 物理学报, 2015, 64(18): 186301. doi: 10.7498/aps.64.186301
    [13] 刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰. GeO分子激发态的电子结构和跃迁性质的组态相互作用方法研究. 物理学报, 2015, 64(12): 123101. doi: 10.7498/aps.64.123101
    [14] 田原野, 郭福明, 曾思良, 杨玉军. 原子激发态在高频强激光作用下的光电离研究. 物理学报, 2013, 62(11): 113201. doi: 10.7498/aps.62.113201
    [15] 孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明. 利用激光冷却原子束测量氦原子精密光谱. 物理学报, 2012, 61(17): 170601. doi: 10.7498/aps.61.170601
    [16] 张宝武, 张萍萍, 马艳, 李同保. 铬原子束横向一维激光冷却的蒙特卡罗方法仿真. 物理学报, 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [17] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质. 物理学报, 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [18] 周业宏, 蔡绍洪. 氯乙烯在外电场下的激发态结构研究. 物理学报, 2010, 59(11): 7749-7755. doi: 10.7498/aps.59.7749
    [19] 魏 群, 杨子元, 王参军, 许启明. 轴对称晶场中d3离子激发态对4A2基态自旋哈密顿参量的影响. 物理学报, 2007, 56(1): 507-511. doi: 10.7498/aps.56.507
    [20] 汤乃云, 陈效双, 陆 卫. 尺寸分布对量子点激发态发光性质的影响. 物理学报, 2005, 54(12): 5855-5860. doi: 10.7498/aps.54.5855
计量
  • 文章访问数:  2304
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-07
  • 修回日期:  2023-09-16
  • 上网日期:  2023-10-12
  • 刊出日期:  2024-01-20

/

返回文章
返回