搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同波长下氩原子高阶阈上电离的类共振增强结构

王品懿 贾欣燕 樊代和 陈京

引用本文:
Citation:

不同波长下氩原子高阶阈上电离的类共振增强结构

王品懿, 贾欣燕, 樊代和, 陈京

Resonance-like enhancement in high-order above-threshold ionzation of argon at different wavelengths

Wang Pin-Yi, Jia Xin-Yan, Fan Dai-He, Chen Jing
PDF
导出引用
  • 利用量子S-矩阵理论, 借助一致近似方法, 研究了波长分别为800, 1300与2000 nm的强激光场下氩原子高阶阈上电离光电子能谱的类共振增强结构. 结果表明: 在近红外和中红外波段的强激光场下, 阈上电离光电子能谱中均会出现类共振增强结构, 而出现的光强正好满足通道关闭条件, 从而进一步证实了类共振增强的通道关闭机理解释; 发现随着激光波长和光强的增加, 光电子能谱中类共振增强和抑制会交替出现, 该原因可能是电子返回次数不同的“量子轨道”间的相干叠加, 这可以解释实验观察到的长波长下出现的类共振增强能量范围展宽的现象. 研究表明, 在中红外波段的强激光场下, 也会出现与近红外波段类似的type-Ⅰ和type-Ⅱ类共振增强结构.
    Quantum S-matrix theory and “uniform approximation” method are used to study the resonance-like enhancement (RLE) structures in photoelectron spectrum of high-order above-threshold ionization (HATI) for argon atoms subjected to strong laser fields at different wavelengths. Our results show that both in the near infrared and mid-infrared fields, the RLE structures in the photoelectron spectra will appear, which manifests as a group of adjacent HATI peaks that show a significant enhancement when the laser intensity increases only a few percent. The RLE occurs precisely when the laser intensity satisfies the channel-closing (CC) condition, and this further confirms the explanation of CC mechanism of the RLE. More importantly, we find that with increasing laser wavelength, the resonance-like enhancement and suppression will appear alternately in the photoelectron energy spectrum, and this alternation phenomenon will be more pronounced as the intensity increases. This phenomenon may be attributed to the interference of “quantum orbital” of electrons which collide with the core at different return time. Since in the condition of long wavelength, the alternation phenomenon of the RLE is more pronounced, the RLE is distributed from the low-energy regime to the cutoff-regime in the photoelectron energy spectrum, thus making the RLE broader than that in the case of short wavelength. This may be used to explain the experimentally observed extension of the RLE energy region at longer wavelength. In addition, it is also shown that similar to the case of the near infrared laser fields, two types of RLE structures are also found in strong mid-infrared laser fields, where type-Ⅰ enhancement occurs in the region 5%-10% below even CC for Ar atom whose ground state has an odd parity, and its intensity dependence is comparatively smooth; and type-Ⅱ enhancement appears exactly at the channel closing and has a particularly sharp intensity dependence. And both types of enhancements are due to the constructive interference of a large amount of quantum orbits.
    • 基金项目: 国家自然科学基金(批准号: 11104225, 11274050, 11334009, 61308008, 11425414)、中央高校基本科研业务费专项资金(批准号: 2682014CX081, 2682014CX082)和国家重点基础研究发展计划(批准号: 2011CB808102, 2013CB922201)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104225, 11274050, 11334009, 61308008, 11425414), the Fundamental Research Funds for the Central Universities of China (Grant Nos. 2682014CX081, 2682014CX082), and the National Basic Research Program of China (Grant Nos. 2011CB808102, 2013CB922201).
    [1]

    Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127

    [2]

    Paulus G G, Nicklich W, Xu H L, Lambropoulos P, Walther H 1994 Phys. Rev. Lett. 72 2851

    [3]

    Yu X G, Wang B B, Cheng T W, Li X F, Fu P M 2005 Acta Phys. Sin. 54 3542 (in Chinese) [余晓光, 王兵兵, 程太旺, 李晓峰, 傅盘铭 2005 物理学报 54 3542]

    [4]

    Schafer K J, Baorui Yang, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599

    [5]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [6]

    Hertlein M P, Bucksbaum P H, Muller H G 1997 J. Phys. B 30 L197

    [7]

    Hansch P, Walker M A, van Woerkom L D 1997 Phys. Rev. A 55 R2535

    [8]

    Muller H G, Kooiman F C 1998 Phys. Rev. Lett. 81 1207

    [9]

    Muller H G 1999 Ibid 83 3158

    [10]

    Muller H G 1999 Phys. Rev. A 60 1341

    [11]

    Cormier E, Garzella D, Breger P, Agostini P, Cheriaux G, Leblanc C 2001 J. Phys. B 34 L9

    [12]

    Wassaf J, Veniard V, Taieb R, Maquet A 2003 Phys. Rev. Lett. 90 013003

    [13]

    Potvliege R M, Vucic S 2006 Phys. Rev. A 74 023412

    [14]

    Potvliege R M, Vucic S 2009 J. Phys. B 42 055603

    [15]

    Kopold R, Becker W 1999 J. Phys. B 32 L419

    [16]

    Kopold R, Becker W, Kleber M, Paulus G G 2002 J. Phys. B 35 217

    [17]

    Popruzhenko S V, Korneev Ph A, Goreslavski S P, Becker W 2002 Phys. Rev. Lett. 89 023001

    [18]

    Hasovic E, Busuladzic M, Gazibegovic-Busuladzic A, Milosevic D B, Becker W 2007 Laser Phys. 17 376

    [19]

    Milosevic D B, Hasovic E, Busuladzic M, Gazibegovic-Busuladzic A, Becker W 2007 Phys. Rev. A 76 053410

    [20]

    Milosevic D B, Hasovic E, Odzak S, Busuladzic M, Gazibegovi'c-Busuladzic A, Becker W 2008 J. Mod. Opt. 55 2653

    [21]

    Milosevic D B, Becker W, Okunishi M, Prumper G, Shimada K, Ueda K 2010 J. Phys. B 43 015401

    [22]

    Quan W, Lai X Y, Chen Y J, Wang C L, Hu Z L, Liu X J, Hao X L, Chen J, Hasovic E, Busuladzic M, Becker W, Milosevic D B 2013 Phys. Rev. A 88 R021401

    [23]

    Quan W, Lin Z, Wu M, Kang H, Liu H, Liu X, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y, Cheng Y, Xu Z Z 2009 Phys. Rev. Lett. 103 093001

    [24]

    Blaga C I, Catoire F, Colosimo P, Paulus G G, Muller H G, Agostini P, DiMauro L F 2009 Nat. Phys. 5 335

    [25]

    Wu C Y, Yang Y D, Liu Y Q, Gong Q H, Wu M Y, Liu X, Hao X L, Li W D, He X T, Chen J 2012 Phys. Rev. Lett. 109 043001

    [26]

    Agostini P, DiMauro L F 2008 Contemp. Phys. 49 179

    [27]

    Lin Z Y, Wu M Y, Q W, Liu X J, Chen J, Cheng Y 2014 Chin. Phys. B 23 023201

    [28]

    Keldysh L V 1965 Sov. Phys. JETP 20 1307

    [29]

    Faisal F H M 1973 J. Phys. B 6 L89

    [30]

    Reiss H R 1980 Phys. Rev. A 22 1786

    [31]

    Lohr A, Kleber M, Kopold R, Becker W 1997 Phys. Rev. A 55 R4003

    [32]

    Figueira de Morisson Faria C, Schomerus H, Becker W 2002 Phys. Rev. A 66 043413

    [33]

    Milosevic D B, Becker W 2002 Phys. Rev. A 66 063417

    [34]

    Chipperfield L E, Gaier L N, Knight P L, Marangos J P, Tisch J W G 2005 J. Mod. Opt. 52 243

    [35]

    Frolov M V, Manakov N L, Pronin E A, Starace A F 2003 Phys. Rev. Lett. 91 053003

    [36]

    Frolov M V, Manakov N L, Pronin E A, Starace A F 2003 J. Phys. B 36 L419

    [37]

    Manakov N L, Frolov M V 2006 JETP Lett. 83 536

    [38]

    Krajewska K, Fabrikant I I, Starace A F 2006 Phys. Rev. A 74 053407

    [39]

    Krajewska K, Fabrikant I I, Starace A F 2007 Laser Phys. 17 368

  • [1]

    Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127

    [2]

    Paulus G G, Nicklich W, Xu H L, Lambropoulos P, Walther H 1994 Phys. Rev. Lett. 72 2851

    [3]

    Yu X G, Wang B B, Cheng T W, Li X F, Fu P M 2005 Acta Phys. Sin. 54 3542 (in Chinese) [余晓光, 王兵兵, 程太旺, 李晓峰, 傅盘铭 2005 物理学报 54 3542]

    [4]

    Schafer K J, Baorui Yang, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599

    [5]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [6]

    Hertlein M P, Bucksbaum P H, Muller H G 1997 J. Phys. B 30 L197

    [7]

    Hansch P, Walker M A, van Woerkom L D 1997 Phys. Rev. A 55 R2535

    [8]

    Muller H G, Kooiman F C 1998 Phys. Rev. Lett. 81 1207

    [9]

    Muller H G 1999 Ibid 83 3158

    [10]

    Muller H G 1999 Phys. Rev. A 60 1341

    [11]

    Cormier E, Garzella D, Breger P, Agostini P, Cheriaux G, Leblanc C 2001 J. Phys. B 34 L9

    [12]

    Wassaf J, Veniard V, Taieb R, Maquet A 2003 Phys. Rev. Lett. 90 013003

    [13]

    Potvliege R M, Vucic S 2006 Phys. Rev. A 74 023412

    [14]

    Potvliege R M, Vucic S 2009 J. Phys. B 42 055603

    [15]

    Kopold R, Becker W 1999 J. Phys. B 32 L419

    [16]

    Kopold R, Becker W, Kleber M, Paulus G G 2002 J. Phys. B 35 217

    [17]

    Popruzhenko S V, Korneev Ph A, Goreslavski S P, Becker W 2002 Phys. Rev. Lett. 89 023001

    [18]

    Hasovic E, Busuladzic M, Gazibegovic-Busuladzic A, Milosevic D B, Becker W 2007 Laser Phys. 17 376

    [19]

    Milosevic D B, Hasovic E, Busuladzic M, Gazibegovic-Busuladzic A, Becker W 2007 Phys. Rev. A 76 053410

    [20]

    Milosevic D B, Hasovic E, Odzak S, Busuladzic M, Gazibegovi'c-Busuladzic A, Becker W 2008 J. Mod. Opt. 55 2653

    [21]

    Milosevic D B, Becker W, Okunishi M, Prumper G, Shimada K, Ueda K 2010 J. Phys. B 43 015401

    [22]

    Quan W, Lai X Y, Chen Y J, Wang C L, Hu Z L, Liu X J, Hao X L, Chen J, Hasovic E, Busuladzic M, Becker W, Milosevic D B 2013 Phys. Rev. A 88 R021401

    [23]

    Quan W, Lin Z, Wu M, Kang H, Liu H, Liu X, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y, Cheng Y, Xu Z Z 2009 Phys. Rev. Lett. 103 093001

    [24]

    Blaga C I, Catoire F, Colosimo P, Paulus G G, Muller H G, Agostini P, DiMauro L F 2009 Nat. Phys. 5 335

    [25]

    Wu C Y, Yang Y D, Liu Y Q, Gong Q H, Wu M Y, Liu X, Hao X L, Li W D, He X T, Chen J 2012 Phys. Rev. Lett. 109 043001

    [26]

    Agostini P, DiMauro L F 2008 Contemp. Phys. 49 179

    [27]

    Lin Z Y, Wu M Y, Q W, Liu X J, Chen J, Cheng Y 2014 Chin. Phys. B 23 023201

    [28]

    Keldysh L V 1965 Sov. Phys. JETP 20 1307

    [29]

    Faisal F H M 1973 J. Phys. B 6 L89

    [30]

    Reiss H R 1980 Phys. Rev. A 22 1786

    [31]

    Lohr A, Kleber M, Kopold R, Becker W 1997 Phys. Rev. A 55 R4003

    [32]

    Figueira de Morisson Faria C, Schomerus H, Becker W 2002 Phys. Rev. A 66 043413

    [33]

    Milosevic D B, Becker W 2002 Phys. Rev. A 66 063417

    [34]

    Chipperfield L E, Gaier L N, Knight P L, Marangos J P, Tisch J W G 2005 J. Mod. Opt. 52 243

    [35]

    Frolov M V, Manakov N L, Pronin E A, Starace A F 2003 Phys. Rev. Lett. 91 053003

    [36]

    Frolov M V, Manakov N L, Pronin E A, Starace A F 2003 J. Phys. B 36 L419

    [37]

    Manakov N L, Frolov M V 2006 JETP Lett. 83 536

    [38]

    Krajewska K, Fabrikant I I, Starace A F 2006 Phys. Rev. A 74 053407

    [39]

    Krajewska K, Fabrikant I I, Starace A F 2007 Laser Phys. 17 368

  • [1] 郭春祥, 焦志宏, 周效信, 李鹏程. 激光强度依赖的阈下谐波产生机制. 物理学报, 2020, 69(7): 074203. doi: 10.7498/aps.69.20191883
    [2] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖. 物理学报, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [3] 黄文逍, 张逸竹, 阎天民, 江玉海. 超快强场下低能光电子的研究进展解析R矩阵半经典轨迹理论. 物理学报, 2016, 65(22): 223204. doi: 10.7498/aps.65.223204
    [4] 白春江, 崔万照, 余金清. 超短超强激光脉冲辐照超薄碳膜电离状态研究. 物理学报, 2016, 65(11): 113201. doi: 10.7498/aps.65.113201
    [5] 金发成, 王兵兵. 频域图像下的强场非序列电离过程. 物理学报, 2016, 65(22): 224205. doi: 10.7498/aps.65.224205
    [6] 肖相如, 王慕雪, 黎敏, 耿基伟, 刘运全, 彭良友. 强激光场中原子单电离的半经典方法. 物理学报, 2016, 65(22): 220203. doi: 10.7498/aps.65.220203
    [7] 赵磊, 张琦, 董敬伟, 吕航, 徐海峰. 不同原子在飞秒强激光场中的里德堡态激发和双电离. 物理学报, 2016, 65(22): 223201. doi: 10.7498/aps.65.223201
    [8] 郭丽, 韩申生, 陈京. 利用类维格纳分布函数方法研究阈上电离. 物理学报, 2016, 65(22): 223203. doi: 10.7498/aps.65.223203
    [9] 田原野, 郭福明, 杨玉军. 原子势对阈上电离平台的影响. 物理学报, 2013, 62(7): 073202. doi: 10.7498/aps.62.073202
    [10] 田原野, 郭福明, 曾思良, 杨玉军. 原子激发态在高频强激光作用下的光电离研究. 物理学报, 2013, 62(11): 113201. doi: 10.7498/aps.62.113201
    [11] 田原野, 魏珊珊, 郭福明, 李苏宇, 杨玉军. 共振条件下载波包络相位效应对阈上电离谱的影响. 物理学报, 2013, 62(15): 153202. doi: 10.7498/aps.62.153202
    [12] 马宁, 王美山, 杨传路, 熊德林, 李小虎, 马晓光. 激光场强度对NO电子态粒子数布居影响的理论研究. 物理学报, 2010, 59(1): 215-221. doi: 10.7498/aps.59.215
    [13] 叶小亮, 周效信, 赵松峰, 李鹏程. 原子在两色组合激光场中产生的单个阿秒脉冲. 物理学报, 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
    [14] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响. 物理学报, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [15] 郭中华, 周效信. 基态分子波函数对N2分子在强激光场中产生高次谐波的影响. 物理学报, 2008, 57(3): 1616-1621. doi: 10.7498/aps.57.1616
    [16] 赵松峰, 周效信, 金 成. 强激光场中模型氢原子和真实氢原子的高次谐波与电离特性研究. 物理学报, 2006, 55(8): 4078-4085. doi: 10.7498/aps.55.4078
    [17] 李鹏程, 周效信, 董晨钟, 赵松峰. 强激光场中长程势与短程势原子产生高次谐波与电离特性研究. 物理学报, 2004, 53(3): 750-755. doi: 10.7498/aps.53.750
    [18] 周效信, 李白文. 强激光场中原子的束缚态和连续态对高次谐波的影响. 物理学报, 2001, 50(10): 1902-1906. doi: 10.7498/aps.50.1902
    [19] 邵磊, 霍裕昆, 王平晓, 孔青, 袁祥群, 冯量. 场极化方向对强激光加速电子效应的影响. 物理学报, 2001, 50(7): 1284-1289. doi: 10.7498/aps.50.1284
    [20] 郑丽萍, 邱锡钧. 光强、频率对强激光场中的多原子分子离子增强电离行为的影响. 物理学报, 2000, 49(10): 1965-1968. doi: 10.7498/aps.49.1965
计量
  • 文章访问数:  3224
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-08
  • 修回日期:  2015-03-18
  • 刊出日期:  2015-07-05

不同波长下氩原子高阶阈上电离的类共振增强结构

  • 1. 西南交通大学量子光电实验室, 成都 610031;
  • 2. 北京应用物理与计算数学研究所, 北京 100088
    基金项目: 国家自然科学基金(批准号: 11104225, 11274050, 11334009, 61308008, 11425414)、中央高校基本科研业务费专项资金(批准号: 2682014CX081, 2682014CX082)和国家重点基础研究发展计划(批准号: 2011CB808102, 2013CB922201)资助的课题.

摘要: 利用量子S-矩阵理论, 借助一致近似方法, 研究了波长分别为800, 1300与2000 nm的强激光场下氩原子高阶阈上电离光电子能谱的类共振增强结构. 结果表明: 在近红外和中红外波段的强激光场下, 阈上电离光电子能谱中均会出现类共振增强结构, 而出现的光强正好满足通道关闭条件, 从而进一步证实了类共振增强的通道关闭机理解释; 发现随着激光波长和光强的增加, 光电子能谱中类共振增强和抑制会交替出现, 该原因可能是电子返回次数不同的“量子轨道”间的相干叠加, 这可以解释实验观察到的长波长下出现的类共振增强能量范围展宽的现象. 研究表明, 在中红外波段的强激光场下, 也会出现与近红外波段类似的type-Ⅰ和type-Ⅱ类共振增强结构.

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回