搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强场非次序双电离中再碰撞动力学的强度依赖

黄诚 钟明敏 吴正茂

引用本文:
Citation:

强场非次序双电离中再碰撞动力学的强度依赖

黄诚, 钟明敏, 吴正茂

Intensity-dependent recollision dynamics in strong-field nonsequential double ionization

Huang Cheng, Zhong Ming-Min, Wu Zheng-Mao
PDF
HTML
导出引用
  • 利用三维经典系综模型系统地研究了不同强度线偏振激光脉冲驱动下He原子的非次序双电离. 结果表明在非次序双电离中回碰电子的返回次数、两电子的碰撞距离和电子对的关联特性都强烈地依赖于激光强度. 对于750 nm, 随着激光强度的增加, 单次返回诱导的非次序双电离事件逐渐减少, 而多次返回事件的比例显著增加. 对于1500 nm, 随着激光强度的增加, 前三次返回诱导的非次序双电离事件都会减少, 返回次数大于3的轨道对非次序双电离的贡献逐渐增加. 这是因为在高强度下每次返回过程中母核的库仑吸引对返回电子横向偏离的补偿较弱, 所以需要更多次的返回来补偿电子的横向偏离以实现再碰撞. 轨道分析表明非次序双电离中两电子的碰撞距离随激光波长和强度的增加而逐渐减小. 最后讨论了非次序双电离中电子对的关联特性对返回次数的依赖.
    Using the three-dimensional classical ensemble model, we systematically investigate the strong-field nonsequential double ionization (NSDI) of He atom by intense linearly polarized laser pulses at different intensities for 750 nm and 1500 nm in wavelength. In the intensity range of 0.4−0.8 PW/cm2 considered in this work, for 750 nm wavelength the correlated electron pairs are always distributed mainly near the diagonal but for 1500 nm wavelength, with increasing laser intensity the population of electron pairs moves from the diagonal to the two axes, forming a near-axis V-shaped structure at 0.8 PW/cm2. The analysis indicates that for 750 nm with increasing laser intensity the contribution from the single-return events to NSDI decreases sharply and the contribution from the multiple-return events increases. For 1500 nm wavelength when the laser intensity increases, the contributions from one-, two- and three-return trajectories decrease and the contributions of other trajectories increase. It is because most of ionized electrons have a non-zero initial transverse momentum. After the excursion of the ionized electron, when it returns to the parent ion at the first time there is a distance in the transverse direction between the free electron and the parent ion, which hinders the recollision and NSDI from occurring. The transverse deviation can be significantly reduced by the Coulomb attraction from the parent ion to the free electron when it returns back to the parent ion in the longitudinal direction. Higher intensity results in larger returning velocity for the free electron. The free electron faster passes by the parent ion and the Coulomb attraction has less time to pull the free electron to the parent ion. For each return the compensation of the Coulomb attraction for the transverse deviation for high intensity is weaker than for low intensity. Thus for higher intensities more returns are required to compensate for the transverse deviation. Moreover, numerical results show the recollision distance in NSDI is smaller for the longer wavelength and higher intensity. It is attributed to the larger returning velocity of the free electron at the longer wavelength and higher intensity, which can more easily overcome the strong Coulomb repulsion between the two electrons and achieve a smaller recollision distance. Finally, electron correlation behaviors for those trajectories where recollision occurs with different return times are studied.
      通信作者: 黄诚, huangcheng@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11504302, 61178011, 61475127, 61475132)资助的课题.
      Corresponding author: Huang Cheng, huangcheng@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504302, 61178011, 61475127, 61475132).
    [1]

    L'Huillier A, Lompre L A, Mainfray G, Manus C 1983 Phys. Rev. A 27 2503Google Scholar

    [2]

    Figueira de Morisson Faria C, Liu X 2011 J. Mod. Opt. 58 1076Google Scholar

    [3]

    Becker W, Liu X, Jo Ho P, Eberly J H 2012 Rev. Mod. Phys. 84 1011Google Scholar

    [4]

    Weber Th, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Dörner R 2000 Nature 405 658Google Scholar

    [5]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [6]

    Feuerstein B, Moshammer R, Fischer D, Dorn A, Schröter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Höhr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Sandner W 2001 Phys. Rev. Lett. 87 043003Google Scholar

    [7]

    Lein M, Gross E K U, Engel V 2000 Phys. Rev. Lett. 85 4707Google Scholar

    [8]

    Parker J S, Doherty B J S, Taylor K T, Schultz K D, Blaga C I, DiMauro L F 2006 Phys. Rev. Lett. 96 133001Google Scholar

    [9]

    Wang X, Eberly J H 2010 Phys. Rev. Lett. 105 083001Google Scholar

    [10]

    Hao X L, Chen J, Li W D, Wang B B, Wang X D, Becker W 2014 Phys. Rev. Lett. 112 073002Google Scholar

    [11]

    Liu Y, Fu L, Ye D, Liu J, Li M, Wu C, Gong Q, Moshammer R, Ullrich J 2014 Phys. Rev. Lett. 112 013003Google Scholar

    [12]

    Chen Y, Zhou Y, Li Y, Li M, Lan P, Lu P 2018 Phys. Rev. A 97 013428Google Scholar

    [13]

    Wang Y, Xu S, Quan W, Gong C, Lai X, Hu S, Liu M, Chen J, Liu X 2016 Phys. Rev. A 94 053412Google Scholar

    [14]

    Ye D, Li M, Fu L, Liu J, Gong Q, Liu Y, Ullrich J 2015 Phys. Rev. Lett. 115 123001Google Scholar

    [15]

    Liu Y, Tschuch S, Rudenko A, Dürr M, Siegel M, Morgner U, Moshammer R, Ullrich J 2008 Phys. Rev. Lett. 101 053001Google Scholar

    [16]

    Staudte A, Ruiz C, Schöffler M, Schössler S, Zeidler D, Weber Th, Meckel M, Villeneuve D M, Corkum P B, Becker A, Dörner R 2007 Phys. Rev. Lett. 99 263002Google Scholar

    [17]

    Rudenko A, Jesus V L B, Ergler Th, Zrost K, Feuerstein B, Schröter C D, Moshammer R, Ullrich J 2007 Phys. Rev. Lett. 99 263003Google Scholar

    [18]

    Chen Z J, Liang Y, Lin C D 2010 Phys. Rev. Lett. 104 253201Google Scholar

    [19]

    Ye D F, Liu X J, Liu J 2008 Phys. Rev. Lett. 101 233003Google Scholar

    [20]

    Zhou Y M, Liao Q, Lu P X 2010 Phys. Rev. A 82 053402Google Scholar

    [21]

    Camus N, Fischer B, Kremer M, Sharma V, Rudenko A, Bergues B, Kubel M, Johnson N G, Kling M F, Pfeifer T, Ullrich J, Moshammer R 2012 Phys. Rev. Lett. 108 073003Google Scholar

    [22]

    Huang C, Zhong M, Wu Z 2016 J. Chem. Phys. 145 044302Google Scholar

    [23]

    Liao Q, Winney A H, Lee S K, Lin Y F, Adhikari P, Li W 2017 Phys. Rev. A 96 023401Google Scholar

    [24]

    Bergues B, Kubel M, Johnson N G, Fischer B, Camus N, Betsch K J, Herrwerth O, Senftleben A, Sayler A M, Rathje T, Pfeifer T, Ben-Itzhak I, Jones R R, Paulus G G, Krausz F, Moshammer R, Ullrich J, Kling M F 2012 Nature Commun. 3 813Google Scholar

    [25]

    Liao Q, Lu P X 2010 Phys. Rev. A 82 021403(R)Google Scholar

    [26]

    Gong X, Song Q, Ji Q, Lin K, Pan H, Ding J, Zeng H, Wu J 2015 Phys. Rev. Lett. 114 163001Google Scholar

    [27]

    Liu K, Qin M, Li Q, Liao Q 2018 Opt. Quantum Electron. 50 364Google Scholar

    [28]

    Liao Q, Li Y, Qin M, Lu P 2017 Phys. Rev. A 96 063408Google Scholar

    [29]

    Winney A H, Lee S K, Lin Y F, Liao Q, Adhikari P, Basnayake G, Schlegel H B, Li W 2017 Phys. Rev. Lett. 119 123201Google Scholar

    [30]

    He M, Li Y, Zhou Y, Li M, Cao W, Lu P 2018 Phys. Rev. Lett. 120 133204Google Scholar

    [31]

    Liu X, Rottke H, Eremina E, Sandner W, Goulielmakis E, Keeffe K O, Lezius M, Krausz F, Lindner F, Schatzel M G, Paulus G G, Walther H 2004 Phys. Rev. Lett. 93 263001Google Scholar

    [32]

    He L, Zhang Q, Lan P, Cao W, Zhu X, Zhai C, Wang F, Shi W, Li M, Bian X, Lu P, Bandrauk A D 2018 Nat. Commun. 9 1108Google Scholar

    [33]

    汤清彬, 张东玲, 余本海, 陈东 2010 物理学报 59 7775Google Scholar

    Tang Q B, Zhang D L, Yu B H, Chen D 2010 Acta Phys. Sin. 59 7775Google Scholar

    [34]

    黄诚, 钟明敏, 吴正茂 2016 物理学报 65 083301Google Scholar

    Huang C, Zhong M, Wu Z 2016 Acta Phys. Sin. 65 083301Google Scholar

    [35]

    Li H Y, Chen J, Jiang H B, Liu J, Fu P M, Gong Q H, Yan Z C, Wang B B 2009 J. Phys. B 42 125601Google Scholar

    [36]

    Wang J, He F 2018 Phys. Rev. A 97 043411Google Scholar

    [37]

    Ma X, Zhou Y, Li N, Li M, Lu P 2018 Opt. Laser Technol. 108 235Google Scholar

    [38]

    Zhou Y, Huang C, Tong A, Liao Q, Lu P 2011 Opt. Express 19 2301Google Scholar

    [39]

    Zhang L, Xie X H, Roither S, Zhou Y M, Lu P X, Kartashov D, Schoffler M, Shafir D, Corkum P B, Baltuska A, Staudte A, Kitzler M 2014 Phys. Rev. Lett. 112 193002Google Scholar

    [40]

    童爱红, 冯国强, 邓永菊 2012 物理学报 61 093303Google Scholar

    Tong A H, Feng G Q, Deng Y J 2012 Acta Phys. Sin. 61 093303Google Scholar

    [41]

    Chaloupka J L, Hickstein D D 2016 Phys. Rev. Lett. 116 143005Google Scholar

    [42]

    Xu T, Zhu Q, Chen J, Ben S, Zhang J, Liu X 2018 Opt. Express 26 1645Google Scholar

    [43]

    Huang C, Zhong M, Wu Z 2018 Opt. Express 26 26045Google Scholar

    [44]

    Wolter B, Pullen M G, Baudisch M, Sclafani M, Hemmer M, Senftleben A, Schrter C D, Ullrich J 2015 Phys. Rev. X 5 021034Google Scholar

    [45]

    Huang C, Zhong M, Wu Z 2016 Opt. Express 24 28361Google Scholar

    [46]

    Li Y, Wang X, Yu B, Tang B, Wang G, Wan J 2016 Sci. Rep. 6 37413Google Scholar

    [47]

    Chen J, Nam C H 2002 Phys. Rev. A 66 053415Google Scholar

    [48]

    Panli R, Eberly J H, Haan S L 2001 Opt. Express 8 431Google Scholar

    [49]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008Google Scholar

    [50]

    Dong S S, Zhang Z L, Bai L H, Zhang J T 2015 Phys. Rev. A 92 033409Google Scholar

    [51]

    Huang C, Zhong M, Wu Z 2018 Sci. Rep. 8 8772Google Scholar

  • 图 1  He原子NSDI的关联电子动量分布 (a) 750 nm, 0.4 PW/cm2; (b) 750 nm, 0.6 PW/cm2; (c) 750 nm, 0.8 PW/cm2; (d) 1500 nm, 0.4 PW/cm2; (e) 1500 nm, 0.6 PW/cm2; (f) 1500 nm, 0.8 PW/cm2

    Fig. 1.  Correlated electron momentum distributions in NSDI of He: (a) 750 nm, 0.4 PW/cm2; (b) 750 nm, 0.6 PW/cm2; (c) 750 nm, 0.8 PW/cm2; (d) 1500 nm, 0.4 PW/cm2; (e) 1500 nm, 0.6 PW/cm2; (f) 1500 nm, 0.8 PW/cm2.

    图 2  各次返回诱导的NSDI在总的NSDI中所占的百分比 (a) 750 nm; (b) 1500 nm

    Fig. 2.  Proportion of each return in the total NSDI yield: (a) 750 nm; (b) 1500 nm.

    图 3  NSDI事件关于碰撞距离的概率分布 (a) 750 nm; (b) 1500 nm.

    Fig. 3.  Recollison distance in NSDI for (a) 750 nm and (b) 1500 nm at the laser intensities of 0.4, 0.6 and 0.8 PW/cm2.

    图 4  750 nm 激光脉冲驱动He原子NSDI的关联电子动量分布 (a)—(e) 0.4 PW/cm2; (f)—(j) 0.6 PW/cm2; (k)—(o) 0.8 PW/cm2; 从左到右每列对应不同返回次数诱导的NSDI事件

    Fig. 4.  Correlated electron momentum distributions in NSDI of He for 750 nm at the laser intensities of 0.4 (the first row), 0.6 (the second row) and 0.8 PW/cm2 (the third row). The columns from left to right correspond to return numbers of 1 to 5.

    图 5  1500 nm 激光脉冲驱动He原子NSDI的关联电子动量分布 (a)—(e) 0.4 PW/cm2; (f)—(j) 0.6 PW/cm2; (k)—(o) 0.8 PW/cm2; 从左到右每列对应不同返回次数诱导的NSDI事件

    Fig. 5.  Correlated electron momentum distributions in NSDI of He for 1500 nm at the laser intensities of 0.4 (the first row), 0.6 (the second row) and 0.8 PW/cm2 (the third row). The columns from left to right correspond to return numbers of 1 to 5.

  • [1]

    L'Huillier A, Lompre L A, Mainfray G, Manus C 1983 Phys. Rev. A 27 2503Google Scholar

    [2]

    Figueira de Morisson Faria C, Liu X 2011 J. Mod. Opt. 58 1076Google Scholar

    [3]

    Becker W, Liu X, Jo Ho P, Eberly J H 2012 Rev. Mod. Phys. 84 1011Google Scholar

    [4]

    Weber Th, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Dörner R 2000 Nature 405 658Google Scholar

    [5]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [6]

    Feuerstein B, Moshammer R, Fischer D, Dorn A, Schröter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Höhr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Sandner W 2001 Phys. Rev. Lett. 87 043003Google Scholar

    [7]

    Lein M, Gross E K U, Engel V 2000 Phys. Rev. Lett. 85 4707Google Scholar

    [8]

    Parker J S, Doherty B J S, Taylor K T, Schultz K D, Blaga C I, DiMauro L F 2006 Phys. Rev. Lett. 96 133001Google Scholar

    [9]

    Wang X, Eberly J H 2010 Phys. Rev. Lett. 105 083001Google Scholar

    [10]

    Hao X L, Chen J, Li W D, Wang B B, Wang X D, Becker W 2014 Phys. Rev. Lett. 112 073002Google Scholar

    [11]

    Liu Y, Fu L, Ye D, Liu J, Li M, Wu C, Gong Q, Moshammer R, Ullrich J 2014 Phys. Rev. Lett. 112 013003Google Scholar

    [12]

    Chen Y, Zhou Y, Li Y, Li M, Lan P, Lu P 2018 Phys. Rev. A 97 013428Google Scholar

    [13]

    Wang Y, Xu S, Quan W, Gong C, Lai X, Hu S, Liu M, Chen J, Liu X 2016 Phys. Rev. A 94 053412Google Scholar

    [14]

    Ye D, Li M, Fu L, Liu J, Gong Q, Liu Y, Ullrich J 2015 Phys. Rev. Lett. 115 123001Google Scholar

    [15]

    Liu Y, Tschuch S, Rudenko A, Dürr M, Siegel M, Morgner U, Moshammer R, Ullrich J 2008 Phys. Rev. Lett. 101 053001Google Scholar

    [16]

    Staudte A, Ruiz C, Schöffler M, Schössler S, Zeidler D, Weber Th, Meckel M, Villeneuve D M, Corkum P B, Becker A, Dörner R 2007 Phys. Rev. Lett. 99 263002Google Scholar

    [17]

    Rudenko A, Jesus V L B, Ergler Th, Zrost K, Feuerstein B, Schröter C D, Moshammer R, Ullrich J 2007 Phys. Rev. Lett. 99 263003Google Scholar

    [18]

    Chen Z J, Liang Y, Lin C D 2010 Phys. Rev. Lett. 104 253201Google Scholar

    [19]

    Ye D F, Liu X J, Liu J 2008 Phys. Rev. Lett. 101 233003Google Scholar

    [20]

    Zhou Y M, Liao Q, Lu P X 2010 Phys. Rev. A 82 053402Google Scholar

    [21]

    Camus N, Fischer B, Kremer M, Sharma V, Rudenko A, Bergues B, Kubel M, Johnson N G, Kling M F, Pfeifer T, Ullrich J, Moshammer R 2012 Phys. Rev. Lett. 108 073003Google Scholar

    [22]

    Huang C, Zhong M, Wu Z 2016 J. Chem. Phys. 145 044302Google Scholar

    [23]

    Liao Q, Winney A H, Lee S K, Lin Y F, Adhikari P, Li W 2017 Phys. Rev. A 96 023401Google Scholar

    [24]

    Bergues B, Kubel M, Johnson N G, Fischer B, Camus N, Betsch K J, Herrwerth O, Senftleben A, Sayler A M, Rathje T, Pfeifer T, Ben-Itzhak I, Jones R R, Paulus G G, Krausz F, Moshammer R, Ullrich J, Kling M F 2012 Nature Commun. 3 813Google Scholar

    [25]

    Liao Q, Lu P X 2010 Phys. Rev. A 82 021403(R)Google Scholar

    [26]

    Gong X, Song Q, Ji Q, Lin K, Pan H, Ding J, Zeng H, Wu J 2015 Phys. Rev. Lett. 114 163001Google Scholar

    [27]

    Liu K, Qin M, Li Q, Liao Q 2018 Opt. Quantum Electron. 50 364Google Scholar

    [28]

    Liao Q, Li Y, Qin M, Lu P 2017 Phys. Rev. A 96 063408Google Scholar

    [29]

    Winney A H, Lee S K, Lin Y F, Liao Q, Adhikari P, Basnayake G, Schlegel H B, Li W 2017 Phys. Rev. Lett. 119 123201Google Scholar

    [30]

    He M, Li Y, Zhou Y, Li M, Cao W, Lu P 2018 Phys. Rev. Lett. 120 133204Google Scholar

    [31]

    Liu X, Rottke H, Eremina E, Sandner W, Goulielmakis E, Keeffe K O, Lezius M, Krausz F, Lindner F, Schatzel M G, Paulus G G, Walther H 2004 Phys. Rev. Lett. 93 263001Google Scholar

    [32]

    He L, Zhang Q, Lan P, Cao W, Zhu X, Zhai C, Wang F, Shi W, Li M, Bian X, Lu P, Bandrauk A D 2018 Nat. Commun. 9 1108Google Scholar

    [33]

    汤清彬, 张东玲, 余本海, 陈东 2010 物理学报 59 7775Google Scholar

    Tang Q B, Zhang D L, Yu B H, Chen D 2010 Acta Phys. Sin. 59 7775Google Scholar

    [34]

    黄诚, 钟明敏, 吴正茂 2016 物理学报 65 083301Google Scholar

    Huang C, Zhong M, Wu Z 2016 Acta Phys. Sin. 65 083301Google Scholar

    [35]

    Li H Y, Chen J, Jiang H B, Liu J, Fu P M, Gong Q H, Yan Z C, Wang B B 2009 J. Phys. B 42 125601Google Scholar

    [36]

    Wang J, He F 2018 Phys. Rev. A 97 043411Google Scholar

    [37]

    Ma X, Zhou Y, Li N, Li M, Lu P 2018 Opt. Laser Technol. 108 235Google Scholar

    [38]

    Zhou Y, Huang C, Tong A, Liao Q, Lu P 2011 Opt. Express 19 2301Google Scholar

    [39]

    Zhang L, Xie X H, Roither S, Zhou Y M, Lu P X, Kartashov D, Schoffler M, Shafir D, Corkum P B, Baltuska A, Staudte A, Kitzler M 2014 Phys. Rev. Lett. 112 193002Google Scholar

    [40]

    童爱红, 冯国强, 邓永菊 2012 物理学报 61 093303Google Scholar

    Tong A H, Feng G Q, Deng Y J 2012 Acta Phys. Sin. 61 093303Google Scholar

    [41]

    Chaloupka J L, Hickstein D D 2016 Phys. Rev. Lett. 116 143005Google Scholar

    [42]

    Xu T, Zhu Q, Chen J, Ben S, Zhang J, Liu X 2018 Opt. Express 26 1645Google Scholar

    [43]

    Huang C, Zhong M, Wu Z 2018 Opt. Express 26 26045Google Scholar

    [44]

    Wolter B, Pullen M G, Baudisch M, Sclafani M, Hemmer M, Senftleben A, Schrter C D, Ullrich J 2015 Phys. Rev. X 5 021034Google Scholar

    [45]

    Huang C, Zhong M, Wu Z 2016 Opt. Express 24 28361Google Scholar

    [46]

    Li Y, Wang X, Yu B, Tang B, Wang G, Wan J 2016 Sci. Rep. 6 37413Google Scholar

    [47]

    Chen J, Nam C H 2002 Phys. Rev. A 66 053415Google Scholar

    [48]

    Panli R, Eberly J H, Haan S L 2001 Opt. Express 8 431Google Scholar

    [49]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008Google Scholar

    [50]

    Dong S S, Zhang Z L, Bai L H, Zhang J T 2015 Phys. Rev. A 92 033409Google Scholar

    [51]

    Huang C, Zhong M, Wu Z 2018 Sci. Rep. 8 8772Google Scholar

  • [1] 葛振杰, 苏旭, 白丽华. 反旋双色椭圆偏振激光场中Ar原子的非序列双电离. 物理学报, 2024, 73(9): 093201. doi: 10.7498/aps.73.20231583
    [2] 贺佟佟, 刘子超, 李盈傧, 黄诚. 平行偏振三色场对原子非次序双电离的调控. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240737
    [3] 李盈傧, 张可, 陈红梅, 康帅杰, 李整法, 程建国, 吴银梦, 翟春洋, 汤清彬, 许景焜, 余本海. 空间非均匀激光场驱动的原子非次序双电离. 物理学报, 2023, 72(16): 163201. doi: 10.7498/aps.72.20230548
    [4] 苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚. 反旋双色椭偏场中Ar非次序双电离电子关联的强度依赖. 物理学报, 2022, 71(19): 193201. doi: 10.7498/aps.71.20221044
    [5] 曾雪, 苏杰, 黄雪飞, 庞惠玲, 黄诚. 同向旋转双色圆偏场中非次序双电离的频率比依赖. 物理学报, 2021, 70(24): 243201. doi: 10.7498/aps.70.20211112
    [6] 张斌, 赵健, 赵增秀. 基于多组态含时Hartree-Fock方法研究电子关联对于H2分子强场电离的影响. 物理学报, 2018, 67(10): 103301. doi: 10.7498/aps.67.20172701
    [7] 白春江, 崔万照, 余金清. 超短超强激光脉冲辐照超薄碳膜电离状态研究. 物理学报, 2016, 65(11): 113201. doi: 10.7498/aps.65.113201
    [8] 肖相如, 王慕雪, 黎敏, 耿基伟, 刘运全, 彭良友. 强激光场中原子单电离的半经典方法. 物理学报, 2016, 65(22): 220203. doi: 10.7498/aps.65.220203
    [9] 金发成, 王兵兵. 频域图像下的强场非序列电离过程. 物理学报, 2016, 65(22): 224205. doi: 10.7498/aps.65.224205
    [10] 赵磊, 张琦, 董敬伟, 吕航, 徐海峰. 不同原子在飞秒强激光场中的里德堡态激发和双电离. 物理学报, 2016, 65(22): 223201. doi: 10.7498/aps.65.223201
    [11] 吴绍全, 方栋开, 赵国平. 电子关联效应对平行双量子点系统磁输运性质的影响. 物理学报, 2015, 64(10): 107201. doi: 10.7498/aps.64.107201
    [12] 余本海, 李盈傧. 椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖. 物理学报, 2012, 61(23): 233202. doi: 10.7498/aps.61.233202
    [13] 余本海, 李盈傧, 汤清彬. 椭圆偏振激光脉冲驱动的氩原子非次序双电离. 物理学报, 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [14] 张东玲, 汤清彬, 余本海, 陈东. 碰撞阈值下氩原子非次序双电离. 物理学报, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [15] 马宁, 王美山, 杨传路, 熊德林, 李小虎, 马晓光. 激光场强度对NO电子态粒子数布居影响的理论研究. 物理学报, 2010, 59(1): 215-221. doi: 10.7498/aps.59.215
    [16] 汤清彬, 张东玲, 余本海, 陈东. 周期量级激光脉冲驱动下非次序双电离的三维经典系综模拟. 物理学报, 2010, 59(11): 7775-7781. doi: 10.7498/aps.59.7775
    [17] 赵松峰, 周效信, 金 成. 强激光场中模型氢原子和真实氢原子的高次谐波与电离特性研究. 物理学报, 2006, 55(8): 4078-4085. doi: 10.7498/aps.55.4078
    [18] 李鹏程, 周效信, 董晨钟, 赵松峰. 强激光场中长程势与短程势原子产生高次谐波与电离特性研究. 物理学报, 2004, 53(3): 750-755. doi: 10.7498/aps.53.750
    [19] 邵磊, 霍裕昆, 王平晓, 孔青, 袁祥群, 冯量. 场极化方向对强激光加速电子效应的影响. 物理学报, 2001, 50(7): 1284-1289. doi: 10.7498/aps.50.1284
    [20] 郑丽萍, 邱锡钧. 光强、频率对强激光场中的多原子分子离子增强电离行为的影响. 物理学报, 2000, 49(10): 1965-1968. doi: 10.7498/aps.49.1965
计量
  • 文章访问数:  6227
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-08
  • 修回日期:  2018-11-30
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-05

/

返回文章
返回