搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光场中原子所受光学偶极力研究

刘纪彩 成飞 赵亚男 郭芬芬

引用本文:
Citation:

飞秒激光场中原子所受光学偶极力研究

刘纪彩, 成飞, 赵亚男, 郭芬芬

Atom-subjected optical dipole force exerted by femtosecond laser field

Liu Ji-Cai, Cheng Fei, Zhao Ya-Nan, Guo Fen-Fen
PDF
HTML
导出引用
  • 通过求解全波矢布洛赫方程研究了两能级原子与飞秒超快激光脉冲的相互作用过程, 计算了不同拉比频率取值下原子所受光学偶极力和粒子数布居随时间的演化情况, 分析了光场失谐量对光学势分布情况的影响. 研究发现: 由飞秒激光场产生的横向光力的时间平均值并不等于零, 而是随着拉比频率的增加呈现振荡的增大趋势; 纵向光力的时间平均作用也并非是拉比频率的单调函数, 而是随着拉比频率的增加呈现周期性的振荡分布特性; 光学势的分布对光场的失谐量具有明显的依赖性, 随着失谐量的变化, 光学势的性质也随之发生了改变.
    In 2011, Kumar et al. (2011 Phys. Rev. A 84 043402) studied the light force acting on a beam of neutral two-level atoms superimposed on a few-cycle-pulse Gaussian laser field under both resonant and off-resonant conditions by solving the optical Bloch equation beyond the rotating-wave approximation, and they found that under resonant condition the transverse component of the light force shows oscillatory behavior but vanishes when a time average is taken, and the time averaged longitudinal force is nonzero only when the Rabi frequency is smaller than the resonant frequency and vanishes when the Rabi frequency is equal to or larger than the resonant frequency. In this paper, we investigate further the strong nonlinear optical interaction between a two-level atomic system and a femtosecond Gaussian laser pulse by solving numerically the full-wave optical Bloch equations through using the predictor-corrector method. It is found that the light forces and the light potentials are sensitive to the value of the Rabi frequency and the detuning of the laser field. Under the resonant condition, the instant light forces induced by the femtosecond laser pulse change their signs as a function of time. The instant longitudinal light force changes its sign at twice the Rabi frequency, while the instant transverse light force changes its sign at twice the light carrier-wave frequency. However, none of the time-averaged light forces is zero, showing periodical oscillation characters as a function of Rabi frequency. Both of the time-averaged longitudinal and transverse light forces oscillate at the Rabi frequency corresponding to the pulse area of 2${\text{π}}$. The time-averaged transverse light force shows also a trend of enhancement with Rabi frequency increasing, and the time-averaged longitudinal light force shows also a saturation trend with the increase of the Rabi frequency. The optical potential depends strongly on the detuning. It changes gradually from repulsive potential to attractive potential when the detuning defined here changes from negative to positive detuning. When the field is nearly resonant, the optical potential then oscillates between repulsive and attractive potentials. Therefore, neutral atoms can be focused, defocused, trapped, splitted or steered by the femtosecond laser field with appropriate detuning and Rabi frequency.
      通信作者: 刘纪彩, jicailiu@ncepu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11574082)和中央高校基本科研业务费(批准号: 2018MS050)资助的课题.
      Corresponding author: Liu Ji-Cai, jicailiu@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574082) and the Fundamental Research Funds for the Central Universities of China (Grant No. 2018MS050).
    [1]

    Meystre P 2001 Atom Optics (New York: Springer) p1

    [2]

    印建平 2012 原子光学—基本概念、原理、技术及其应用 (上海: 上海交通大学出版社) p12

    Yin J P 2012 Atomic Optics: Basic Concepts, Principles, Techniques and Applications (Shanghai: Shanghai Jiao Tong University Press) p12 (in Chinese)

    [3]

    Ashkin A 1970 Phys. Rev. Lett. 24 156Google Scholar

    [4]

    Hänsch T W, Schawlow A L 1975 Opt. Commun. 13 68Google Scholar

    [5]

    Chu S, Hollberg L, Bjorkholm J E, Cable A, Ashkin A 1985 Phys. Rev. Lett. 55 48Google Scholar

    [6]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198Google Scholar

    [7]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969Google Scholar

    [8]

    Cheuk L W, Nichols M A, Okan M, Gersdorf T, Ramasesh V V, Bakr W S, Lompe T, Zwierlein M W 2015 Phys. Rev. Lett. 114 193001Google Scholar

    [9]

    Parsons M F, Huber F, Mazurenko A, Chiu C S, Setiawan W, Wooley-Brown K, Blatt S, Greiner M 2015 Phys. Rev. Lett. 114 213002Google Scholar

    [10]

    Haller E, Hudson J, Kelly A, Cotta D A, Peaudecerf B, Bruce G D, Kuhr S 2015 Nat. Phys. 11 738Google Scholar

    [11]

    王义遒 2007 原子的激光冷却与陷俘 (北京: 北京大学出版社) p101

    Wang Y Q 2007 Laser Cooling and Trapping of Atoms (Beijing: Beijing University Press) p101 (in Chinese)

    [12]

    Metcalf H 2017 Rev. Mod. Phys. 89 041001Google Scholar

    [13]

    van der Straten P, Metcalf H 2016 Atoms and Molecules Interacting with Light (Cambridge: Cambridge University Press) p1

    [14]

    Jiang Y, Narushima T, Okamoto H 2010 Nat. Phys. 6 1005Google Scholar

    [15]

    Garbin V, Cojoc D, Ferrari E, Proietti R Z, Cabrini S, Fabrizio E D 2005 Jpn. J. Appl. Phys. 44 5773Google Scholar

    [16]

    Eichmann U, Nubbemeyer T, Rottke H, Sandner W 2009 Nature 461 1261Google Scholar

    [17]

    Kumar P, Sarma A K 2012 Phys. Rev. A 86 053414Google Scholar

    [18]

    Kumar P, Sarma A K 2014 Phys. Rev. A 89 033422Google Scholar

    [19]

    Cai X, Lin Q 2013 Eur. Phys. J. D 67 246Google Scholar

    [20]

    Allen L, Eberly J H 1987 Optical Resonance and Two-Level Atoms (New York: Dover Publications, Inc) p41

    [21]

    张琴, 金康, 唐远河, 屈光辉 2011 物理学报 60 053204

    Zhang Q, Jin K, Tang Y H, Qu G H 2011 Acta Phys. Sin. 60 053204 (in Chinese)

    [22]

    Wang Z L, Yin J P 2008 Chin. Phys. B 17 2466Google Scholar

    [23]

    Xing J, Chen X, Zhu S, Zhang R 2003 Chin. Opt. Lett. 1 122

    [24]

    Kumar P, Sarma A K 2011 Phys. Rev. A 84 043402Google Scholar

    [25]

    Lembessis V E, Ellinas D 2005 J. Opt. B: Quant. Sem. Opt. 7 319

    [26]

    Liu B, Jin G, Sun R, He J, Wang J 2017 Opt. Express 25 15861Google Scholar

    [27]

    Han Y C 2017 J. Phys. B: At. Mol. Opt. Phys. 50 225401Google Scholar

    [28]

    Liu J C, Wang C K, Gel’mukhanov F 2007 Phys. Rev. A 76 043422Google Scholar

    [29]

    Cai X, Zheng J, Lin Q 2013 Phys. Rev. A 87 043401Google Scholar

    [30]

    Boyd R W 2010 Nonlinear Optics (Singapore: Elsevier Pte Ltd) p158

    [31]

    Liu J C, Guo F F, Zhao Y N, Li X Z 2018 Chin. Phys. B 27 104209Google Scholar

    [32]

    Liu J C, Zhang Y Q, Chen L 2014 J. Mod. Opt. 61 781Google Scholar

    [33]

    刘纪彩, 赵珂, 宋玉志, 王传奎 2006 物理学报 55 1803Google Scholar

    Liu J C, Zhao K, Song Y Z, Wang C K 2006 Acta Phys. Sin. 55 1803Google Scholar

    [34]

    Liu J C, Sun Y P, Wang C K, Ågren H, Gel’mukhanov F 2010 Phys. Rev. A 81 043412Google Scholar

    [35]

    Sun Y P, Liu J C, Wang C K, Ge’lmukhanov F 2010 Phys. Rev. A 81 013812Google Scholar

    [36]

    Butt H J, Cappella B, Kappl M 2005 Surf. Sci. Rep. 59 1

    [37]

    Sukhov S V 2018 J. Commun. Technol. Electr. 63 1137

    [38]

    Florin E L, Pralle A, Hörber J K, Stelzer E H K 1997 J. Stru. Bio. 119 202Google Scholar

    [39]

    Munday J N, Capasso F, Parsegian V A 2009 Nature 457 170Google Scholar

    [40]

    Antognozzi M, Bermingham C R, Harniman R L, Simpson S, Senior J, Hayward R, Hoerber H, Dennis M R, Bekshaev A Y, Bliokh K Y, Nori F 2016 Nat. Phys. 12 731Google Scholar

    [41]

    Tumkur T, Yang X, Zhang C, Yang J, Zhang Y, Naik G V, Nordlander P, Halas N J 2018 Nano Lett. 18 2040Google Scholar

    [42]

    Guan D, Hang Z H, Marcet Z, Liu H, Kravchenko I I, Chan C T, Chan H B, Tong P 2016 Sci. Rep. 5 16216

    [43]

    Jahng J, Ladani F T, Khan R M, Li X, Lee E S, Potma E O 2015 Opt. Lett. 40 5058Google Scholar

  • 图 1  不同峰值拉比频率$G_ {\rm{R}}^0$取值条件下, 在高斯光束束腰所在平面内$z = 0$, 距离光轴$r =$ 0.7071 ${\text{μ}}{\rm{m}}$处(a)原子横向光力${F_ {\rm{T}}}(t)$(实线)和纵向光力${F_ {\rm{L}}}(t)$(虚线)的时间分布情况, (b)粒子数反转$w(t)$的时间演化, 其中对应$G_ {\rm{R}}^0 = 0.1\omega $, $0.25\omega $, $0.5\omega $$\omega $, 在$r =$ 0.7071 ${\text{μ}}{\rm{m}}$位置处的脉冲面积分别为$A=0.913{\text{π}} $, $2.2825{\text{π}} $, $4.565{\text{π}} $$9.13{\text{π}}$; 光场的失谐量取值$\varDelta = 0$

    Fig. 1.  (a) Temporal evolution of the transverse light force ${F_ {\rm{T}}}(t)$ (solid lines) and the longitudinal light forces ${F_ {\rm{L}}}(t)$ (dashed lines); (b) temporal evolution of the population inversion $w(t)$ for different values of the peak Rabi frequencies $G_ {\rm{R}}^0$ at $z = 0$, $r = $ 0.7071 ${\text{μ}}{\rm{m}}$. Pulse area $A$ at $z = 0$, $r = $ 0.7071 ${\text{μ}}{\rm{m}}$ equals respectively $0.913{\text{π}} $, $2.2825{\text{π}} $, $4.565{\text{π}} $ and $9.13{\text{π}}$ for the peak Rabi frequency of $G_ {\rm{R}}^0 = 0.1\omega $, $0.25\omega $, $0.5\omega $ and $\omega $. Field detuning $\varDelta = 0$.

    图 2  在高斯光束束腰所在平面内距离光轴$r = $0.7071 ${\text{μ}}{\rm{m}}$处, 原子所受纵向冲量${I_ {\rm{L}}}(r, z)$(正方形点缀曲线)与横向冲量${I_ {\rm{T}}}(r, z)$(圆形点缀曲线)随输入脉冲的峰值拉比频率$G_ {\rm{R}}^0 = {d_{10}}{E_0}/\hbar $取值的演化情况, 其中$G_{{\text{2π}}}^0$对应脉冲面积为$2{\text{π}}$时的电场峰值拉比频率, 失谐量取值$\varDelta = 0$

    Fig. 2.  Evolution of the longitudinal impulse ${I_ {\rm{L}}}(r, z)$ (square-dotted curve) and the transverse impulse ${I_ {\rm{T}}}(r, z)$ (circle-dotted curve) as a function of the peak Rabi frequency $G_ {\rm{R}}^0 = {d_{10}}{E_0}/\hbar $ at $z = 0$, $r =$ 0.7071 ${\text{μ}}{\rm{m}}.$ $G_{2{\text{π}}}^0$ is the peak Rabi frequency when the area of the pulse equals $2{\text{π}}.$ Detuning $\varDelta = 0$.

    图 3  不同失谐量$\varDelta = {\omega _{10}} - \omega $取值情况下, 在光脉冲强度最强时刻, 束腰所在平面内光学势随径向距离$r$的分布情况(拉比频率$G_ {\rm{R}}^0 = 2.0{\omega _{10}}$)

    Fig. 3.  Distribution of the optical potential as function of the transverse distance $r$ at the central time of the laser pulse with different detunings $\varDelta = {\omega _{10}} - \omega $ for $G_ {\rm{R}}^0 = 2.0{\omega _{10}}$, $z = 0$.

  • [1]

    Meystre P 2001 Atom Optics (New York: Springer) p1

    [2]

    印建平 2012 原子光学—基本概念、原理、技术及其应用 (上海: 上海交通大学出版社) p12

    Yin J P 2012 Atomic Optics: Basic Concepts, Principles, Techniques and Applications (Shanghai: Shanghai Jiao Tong University Press) p12 (in Chinese)

    [3]

    Ashkin A 1970 Phys. Rev. Lett. 24 156Google Scholar

    [4]

    Hänsch T W, Schawlow A L 1975 Opt. Commun. 13 68Google Scholar

    [5]

    Chu S, Hollberg L, Bjorkholm J E, Cable A, Ashkin A 1985 Phys. Rev. Lett. 55 48Google Scholar

    [6]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198Google Scholar

    [7]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969Google Scholar

    [8]

    Cheuk L W, Nichols M A, Okan M, Gersdorf T, Ramasesh V V, Bakr W S, Lompe T, Zwierlein M W 2015 Phys. Rev. Lett. 114 193001Google Scholar

    [9]

    Parsons M F, Huber F, Mazurenko A, Chiu C S, Setiawan W, Wooley-Brown K, Blatt S, Greiner M 2015 Phys. Rev. Lett. 114 213002Google Scholar

    [10]

    Haller E, Hudson J, Kelly A, Cotta D A, Peaudecerf B, Bruce G D, Kuhr S 2015 Nat. Phys. 11 738Google Scholar

    [11]

    王义遒 2007 原子的激光冷却与陷俘 (北京: 北京大学出版社) p101

    Wang Y Q 2007 Laser Cooling and Trapping of Atoms (Beijing: Beijing University Press) p101 (in Chinese)

    [12]

    Metcalf H 2017 Rev. Mod. Phys. 89 041001Google Scholar

    [13]

    van der Straten P, Metcalf H 2016 Atoms and Molecules Interacting with Light (Cambridge: Cambridge University Press) p1

    [14]

    Jiang Y, Narushima T, Okamoto H 2010 Nat. Phys. 6 1005Google Scholar

    [15]

    Garbin V, Cojoc D, Ferrari E, Proietti R Z, Cabrini S, Fabrizio E D 2005 Jpn. J. Appl. Phys. 44 5773Google Scholar

    [16]

    Eichmann U, Nubbemeyer T, Rottke H, Sandner W 2009 Nature 461 1261Google Scholar

    [17]

    Kumar P, Sarma A K 2012 Phys. Rev. A 86 053414Google Scholar

    [18]

    Kumar P, Sarma A K 2014 Phys. Rev. A 89 033422Google Scholar

    [19]

    Cai X, Lin Q 2013 Eur. Phys. J. D 67 246Google Scholar

    [20]

    Allen L, Eberly J H 1987 Optical Resonance and Two-Level Atoms (New York: Dover Publications, Inc) p41

    [21]

    张琴, 金康, 唐远河, 屈光辉 2011 物理学报 60 053204

    Zhang Q, Jin K, Tang Y H, Qu G H 2011 Acta Phys. Sin. 60 053204 (in Chinese)

    [22]

    Wang Z L, Yin J P 2008 Chin. Phys. B 17 2466Google Scholar

    [23]

    Xing J, Chen X, Zhu S, Zhang R 2003 Chin. Opt. Lett. 1 122

    [24]

    Kumar P, Sarma A K 2011 Phys. Rev. A 84 043402Google Scholar

    [25]

    Lembessis V E, Ellinas D 2005 J. Opt. B: Quant. Sem. Opt. 7 319

    [26]

    Liu B, Jin G, Sun R, He J, Wang J 2017 Opt. Express 25 15861Google Scholar

    [27]

    Han Y C 2017 J. Phys. B: At. Mol. Opt. Phys. 50 225401Google Scholar

    [28]

    Liu J C, Wang C K, Gel’mukhanov F 2007 Phys. Rev. A 76 043422Google Scholar

    [29]

    Cai X, Zheng J, Lin Q 2013 Phys. Rev. A 87 043401Google Scholar

    [30]

    Boyd R W 2010 Nonlinear Optics (Singapore: Elsevier Pte Ltd) p158

    [31]

    Liu J C, Guo F F, Zhao Y N, Li X Z 2018 Chin. Phys. B 27 104209Google Scholar

    [32]

    Liu J C, Zhang Y Q, Chen L 2014 J. Mod. Opt. 61 781Google Scholar

    [33]

    刘纪彩, 赵珂, 宋玉志, 王传奎 2006 物理学报 55 1803Google Scholar

    Liu J C, Zhao K, Song Y Z, Wang C K 2006 Acta Phys. Sin. 55 1803Google Scholar

    [34]

    Liu J C, Sun Y P, Wang C K, Ågren H, Gel’mukhanov F 2010 Phys. Rev. A 81 043412Google Scholar

    [35]

    Sun Y P, Liu J C, Wang C K, Ge’lmukhanov F 2010 Phys. Rev. A 81 013812Google Scholar

    [36]

    Butt H J, Cappella B, Kappl M 2005 Surf. Sci. Rep. 59 1

    [37]

    Sukhov S V 2018 J. Commun. Technol. Electr. 63 1137

    [38]

    Florin E L, Pralle A, Hörber J K, Stelzer E H K 1997 J. Stru. Bio. 119 202Google Scholar

    [39]

    Munday J N, Capasso F, Parsegian V A 2009 Nature 457 170Google Scholar

    [40]

    Antognozzi M, Bermingham C R, Harniman R L, Simpson S, Senior J, Hayward R, Hoerber H, Dennis M R, Bekshaev A Y, Bliokh K Y, Nori F 2016 Nat. Phys. 12 731Google Scholar

    [41]

    Tumkur T, Yang X, Zhang C, Yang J, Zhang Y, Naik G V, Nordlander P, Halas N J 2018 Nano Lett. 18 2040Google Scholar

    [42]

    Guan D, Hang Z H, Marcet Z, Liu H, Kravchenko I I, Chan C T, Chan H B, Tong P 2016 Sci. Rep. 5 16216

    [43]

    Jahng J, Ladani F T, Khan R M, Li X, Lee E S, Potma E O 2015 Opt. Lett. 40 5058Google Scholar

  • [1] 李沫, 陈飞良, 罗小嘉, 杨丽君, 张健. 原子芯片的基本原理、关键技术及研究进展. 物理学报, 2021, 70(2): 023701. doi: 10.7498/aps.70.20201561
    [2] 吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强. 拉曼激光边带效应对冷原子重力仪测量精度的影响. 物理学报, 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [3] 赵磊, 张琦, 董敬伟, 吕航, 徐海峰. 不同原子在飞秒强激光场中的里德堡态激发和双电离. 物理学报, 2016, 65(22): 223201. doi: 10.7498/aps.65.223201
    [4] 施建珍, 许田, 周巧巧, 纪宪明, 印建平. 用波晶片相位板产生角动量可调的无衍射涡旋空心光束. 物理学报, 2015, 64(23): 234209. doi: 10.7498/aps.64.234209
    [5] 周琦, 陆俊发, 印建平. 可控双空心光束的理论方案及实验研究. 物理学报, 2015, 64(5): 053701. doi: 10.7498/aps.64.053701
    [6] 周巧巧, 施建珍, 纪宪明, 印建平. 用弧形波晶片产生矢量光束及其强聚焦的特性研究. 物理学报, 2015, 64(5): 053702. doi: 10.7498/aps.64.053702
    [7] 刁文婷, 何军, 刘贝, 王杰英, 王军民. 利用蓝失谐激光诱导微型光学偶极阱中冷原子间的光助碰撞提高单原子制备概率. 物理学报, 2014, 63(2): 023701. doi: 10.7498/aps.63.023701
    [8] 陈国钧, 周巧巧, 纪宪明, 印建平. 用线偏振光产生可调矢量椭圆空心光束. 物理学报, 2014, 63(8): 083701. doi: 10.7498/aps.63.083701
    [9] 陆俊发, 周琦, 潘小青, 印建平. 可操控二种冷原子或冷分子样品的光学双阱新方案及其实验研究. 物理学报, 2013, 62(23): 233701. doi: 10.7498/aps.62.233701
    [10] 张春艳, 赵清, 傅立斌, 刘杰. 飞秒强激光场中氢原子团簇的各向异性膨胀. 物理学报, 2012, 61(14): 143601. doi: 10.7498/aps.61.143601
    [11] 徐淑武, 周巧巧, 顾宋博, 纪宪明, 印建平. 用空间光调制器产生三维光阱阵列. 物理学报, 2012, 61(22): 223702. doi: 10.7498/aps.61.223702
    [12] 顾宋博, 徐淑武, 陆俊发, 纪宪明, 印建平. 用液晶空间光调制器产生光阱阵列. 物理学报, 2012, 61(15): 153701. doi: 10.7498/aps.61.153701
    [13] 陆俊发, 周琦, 纪宪明, 印建平. 实现冷原子、冷分子光学囚禁的组合三光学势阱方案. 物理学报, 2011, 60(6): 063701. doi: 10.7498/aps.60.063701
    [14] 卢向东, 李同保, 马艳, 汪黎栋. 激光汇聚Cr原子沉积的原子光学特性研究. 物理学报, 2009, 58(12): 8205-8211. doi: 10.7498/aps.58.8205
    [15] 纪宪明, 徐淑武, 陆俊发, 徐冬梅, 印建平. 用错位相位光栅产生的可调光学双阱. 物理学报, 2008, 57(12): 7591-7599. doi: 10.7498/aps.57.7591
    [16] 唐 霖, 黄建华, 段正路, 张卫平, 周兆英, 冯焱颖, 朱 荣. 冷原子穿越激光束的量子隧穿时间. 物理学报, 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [17] 陆俊发, 纪宪明, 印建平. 实现冷原子或冷分子囚禁的可控制光学四阱. 物理学报, 2006, 55(4): 1740-1750. doi: 10.7498/aps.55.1740
    [18] 郑森林, 陈 君, 林 强. 光脉冲序列对三能级原子重力仪测量精度的影响. 物理学报, 2005, 54(8): 3535-3541. doi: 10.7498/aps.54.3535
    [19] 段正路, 张卫平, 李师群, 周兆英, 冯焱颖, 朱 荣. 物质波在原子波导中传输时的波导衔接激发. 物理学报, 2005, 54(12): 5622-5628. doi: 10.7498/aps.54.5622
    [20] 纪宪明, 印建平. 冷原子或冷分子囚禁的可控制光学双阱. 物理学报, 2004, 53(12): 4163-4172. doi: 10.7498/aps.53.4163
计量
  • 文章访问数:  5943
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-12
  • 修回日期:  2018-12-17
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-05

/

返回文章
返回