搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子关联效应对平行双量子点系统磁输运性质的影响

吴绍全 方栋开 赵国平

引用本文:
Citation:

电子关联效应对平行双量子点系统磁输运性质的影响

吴绍全, 方栋开, 赵国平

Effect of electronic correlations on magnetotransport through a parallel double quantum dot

Wu Shao-Quan, Fang Dong-Kai, Zhao Guo-Ping
PDF
导出引用
  • 从理论上研究了平行双量子点系统中的电子关联效应对该系统磁输运性质的影响. 基于广义主方程方法, 计算了通过此系统的电流、微分电导和隧穿磁阻. 计算结果表明: 电子自旋关联效应可以促发一个很大的隧穿磁阻, 而电子库仑关联效应不仅可以压制电子自旋关联效应, 还可以导致负隧穿磁阻和负微分电导的出现. 对相关的基本物理问题进行了讨论.
    We theoretically investigate the effects of electronic correlations (including spin and Coulomb correlations) on the magnetotransport through a parallel double quantum dot (DQD) coupled to ferromagnetic leads. Two dots couple coherently through electron correlations, rather than tunneling directly between two dots, and each dot is coupled to two semi-infinite ferromagnetic leads. We assume that the intradot Coulomb repulsion is much larger than the interdot Coulomb repulsion U. Thus, only the zero, one and two-particle DQD states are relevant to transport. Because of interdot electron correlation, the I-V characteristics of each dot is sensitive to the change in the state of the other dot. This work focuses on the effects of electron spin correlation and electron Coulomb correlation on magnetotransport through this system. In order to determine the transport properties of the system, we use the generalized master equation method. This method is based on the reduced density operator defined by averaging the statistical operator of the total system over the states of all leads. With the framework of the generalized master equation and the sequential tunneling approximation, we calculate the current, differential conductance and tunnel magnetoresistance (TMR) in the dot 1 as a function of bias for different spin correlations and Coulomb correlations. Our results reveal that the magnetotransport through this system is more sensitive to Coulomb correlation than to spin correlation; when Coulomb correlation equals zero, the spin correlation can induce a giant tunnel magnetoresistance, which is further larger than the Jullieres value of TMR; when Coulomb correlation occurs, the giant tunnel magnetoresistance disappears; when Coulomb correlation is equal to or larger than spin correlation, Coulomb correlation can suppress spin correlation; while the coexistence of Coulomb correlation and asymmetry of the DQD system can result in dynamical channel blockade, which can lead to the occurrence of negative tunnel magetoresistance and negative differential conductance. These novel properties lead to the potential applications in nanoelectronics, and relevant underlying physics of this problem is discussed.
    • 基金项目: 四川省教育厅自然科学重点基金(批准号: 12ZA132)和四川高校科研创新团队建设计划资助(批准号: 12TD008)资助的课题.
    • Funds: Project supported by the Scientific Research Funds of Education Department of Sichuan Province, China (Grant No. 12ZA132) and Construction Plan for Scientific Research Innovation Team of Sichuan Normal Universities, China (Grant No. 12TD008).
    [1]

    Zutic I, J Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323

    [2]

    Loss D, DiVincenzo D P 1998 Phys. Rev. A 57 120

    [3]

    Hanson R, Burkard G 2007 Phys. Rev. Lett. 98 050502

    [4]

    Cottet A, Belzig W, Bruder C 2004 Phys. Rev. Lett. 92 206801

    [5]

    Weymann I, König J, Martinek J, Barnaò J, Schön G 2005 Phys. Rev. B 72 115334

    [6]

    Goldhaber-Gordon D, Shtrikman H, Mahalu D, Abusch D, Meirav U, Kastner M A 1998 Nature 391 156

    [7]

    Cronenwett S M, Oosterkamp T H, Kouwenhoven L P 1998 Science 281 540

    [8]

    Sun Q F, H Guo H, Lin T H 2001 Phys. Rev. Lett. 87 176601

    [9]

    Hamaya K, Kitabatake M, Shibata K, Jung M, Ishida S, Taniyama T, Hirakawa K, Arakawa Y, Machida T 2009 Phys. Rev. Lett. 102 236806

    [10]

    Buttiker M 1990 Phys. Rev. Lett. 65 2901

    [11]

    Trocha P, Barnaò J 2007 Phys. Rev. B 76 165432

    [12]

    Hornberger R, Koller S, Begemann G, Donarini A, Grifoni M 2008 Phys. Rev. B 77 245313

    [13]

    Weymann I 2007 Phys. Rev. B 75 195339

    [14]

    Wu S Q, He Z, Yan C H, Sun W L, Wang S J 2006 Acta Phys. Sin. 55 1413 (in Chinese) [吴绍全, 何忠, 阎从华, 孙威立, 王顺金 2006 物理学报 55 1413]

    [15]

    Wu S Q 2009 Acta Phys. Sin. 58 4175 (in Chinese) [吴绍全 2009 物理学报 58 4175]

    [16]

    McClure D T, DiCarlo L, Zhang Y, Engel H A, Marcus C M, Hanson M P, Gossard A C 2007 Phys. Rev. Lett. 98 056801

    [17]

    Golovach V N, Loss D 2004 Phys. Rev. B 69 245327

    [18]

    Cota E, Aguado R, Platero G 2005 Phys. Rev. Lett. 94 107202

    [19]

    Weymann I 2008 Phys. Rev. B 78 045310

    [20]

    Izumida W, Sakai O 2000 Phys. Rev. B 62 10260

    [21]

    Jones B A, Varma C M, Wilkins W J 1988 Phys. Rev. Lett. 61 125

    [22]

    Buttiker M 1990 Phys. Rev. Lett. 65 2901

    [23]

    Buttiker M 1992 Phys. Rev. B 46 12485

    [24]

    Trocha P, Barna J 2007 Phys. Rev. B 76 165432

    [25]

    Zou C Y, Wu S Q, Zhao G P 2013 Acta Phys. Sin. 62 017201 (in Chinese) [邹承役, 吴绍全, 赵国平 2013 物理学报 62 017201]

    [26]

    Blum K 1996 Density Matrix Theory and Applications (New York: Taylor & Francis)

  • [1]

    Zutic I, J Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323

    [2]

    Loss D, DiVincenzo D P 1998 Phys. Rev. A 57 120

    [3]

    Hanson R, Burkard G 2007 Phys. Rev. Lett. 98 050502

    [4]

    Cottet A, Belzig W, Bruder C 2004 Phys. Rev. Lett. 92 206801

    [5]

    Weymann I, König J, Martinek J, Barnaò J, Schön G 2005 Phys. Rev. B 72 115334

    [6]

    Goldhaber-Gordon D, Shtrikman H, Mahalu D, Abusch D, Meirav U, Kastner M A 1998 Nature 391 156

    [7]

    Cronenwett S M, Oosterkamp T H, Kouwenhoven L P 1998 Science 281 540

    [8]

    Sun Q F, H Guo H, Lin T H 2001 Phys. Rev. Lett. 87 176601

    [9]

    Hamaya K, Kitabatake M, Shibata K, Jung M, Ishida S, Taniyama T, Hirakawa K, Arakawa Y, Machida T 2009 Phys. Rev. Lett. 102 236806

    [10]

    Buttiker M 1990 Phys. Rev. Lett. 65 2901

    [11]

    Trocha P, Barnaò J 2007 Phys. Rev. B 76 165432

    [12]

    Hornberger R, Koller S, Begemann G, Donarini A, Grifoni M 2008 Phys. Rev. B 77 245313

    [13]

    Weymann I 2007 Phys. Rev. B 75 195339

    [14]

    Wu S Q, He Z, Yan C H, Sun W L, Wang S J 2006 Acta Phys. Sin. 55 1413 (in Chinese) [吴绍全, 何忠, 阎从华, 孙威立, 王顺金 2006 物理学报 55 1413]

    [15]

    Wu S Q 2009 Acta Phys. Sin. 58 4175 (in Chinese) [吴绍全 2009 物理学报 58 4175]

    [16]

    McClure D T, DiCarlo L, Zhang Y, Engel H A, Marcus C M, Hanson M P, Gossard A C 2007 Phys. Rev. Lett. 98 056801

    [17]

    Golovach V N, Loss D 2004 Phys. Rev. B 69 245327

    [18]

    Cota E, Aguado R, Platero G 2005 Phys. Rev. Lett. 94 107202

    [19]

    Weymann I 2008 Phys. Rev. B 78 045310

    [20]

    Izumida W, Sakai O 2000 Phys. Rev. B 62 10260

    [21]

    Jones B A, Varma C M, Wilkins W J 1988 Phys. Rev. Lett. 61 125

    [22]

    Buttiker M 1990 Phys. Rev. Lett. 65 2901

    [23]

    Buttiker M 1992 Phys. Rev. B 46 12485

    [24]

    Trocha P, Barna J 2007 Phys. Rev. B 76 165432

    [25]

    Zou C Y, Wu S Q, Zhao G P 2013 Acta Phys. Sin. 62 017201 (in Chinese) [邹承役, 吴绍全, 赵国平 2013 物理学报 62 017201]

    [26]

    Blum K 1996 Density Matrix Theory and Applications (New York: Taylor & Francis)

  • [1] 葛振杰, 苏旭, 白丽华. 反旋双色椭圆偏振激光场中Ar原子的非序列双电离. 物理学报, 2024, 73(9): 093201. doi: 10.7498/aps.73.20231583
    [2] 刘义俊, 陈以威, 朱雨剑, 黄焱, 安冬冬, 李庆鑫, 甘祺康, 朱旺, 宋珺威, 王开元, 魏凌楠, 宗其军, 刘硕涵, 李世伟, 刘芝, 张琪, 徐瑛海, 曹新宇, 杨奥, 王浩林, 杨冰, Andy Shen, 于葛亮, 王雷. 转角双层-双层石墨烯中同位旋极化的C = 4陈绝缘态. 物理学报, 2023, 72(14): 147303. doi: 10.7498/aps.72.20230497
    [3] 李盈傧, 张可, 陈红梅, 康帅杰, 李整法, 程建国, 吴银梦, 翟春洋, 汤清彬, 许景焜, 余本海. 空间非均匀激光场驱动的原子非次序双电离. 物理学报, 2023, 72(16): 163201. doi: 10.7498/aps.72.20230548
    [4] 钟国华, 林海青. 芳香超导体: 电-声耦合与电子关联. 物理学报, 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [5] 许霄琰. 强关联电子体系的量子蒙特卡罗计算. 物理学报, 2022, 71(12): 127101. doi: 10.7498/aps.71.20220079
    [6] 苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚. 反旋双色椭偏场中Ar非次序双电离电子关联的强度依赖. 物理学报, 2022, 71(19): 193201. doi: 10.7498/aps.71.20221044
    [7] 蓝康, 杜倩, 康丽莎, 姜露静, 林振宇, 张延惠. 基于量子点接触的开放双量子点系统电子转移特性. 物理学报, 2020, 69(4): 040504. doi: 10.7498/aps.69.20191718
    [8] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖. 物理学报, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [9] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究. 物理学报, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [10] 张斌, 赵健, 赵增秀. 基于多组态含时Hartree-Fock方法研究电子关联对于H2分子强场电离的影响. 物理学报, 2018, 67(10): 103301. doi: 10.7498/aps.67.20172701
    [11] 任益充, 范洪义. 两能级原子主方程和激光通道主方程的解之间的超对称性. 物理学报, 2016, 65(3): 030301. doi: 10.7498/aps.65.030301
    [12] 吴海娜, 孙雪, 公卫江, 易光宇. 电子-声子相互作用对平行双量子点体系热电效应的影响. 物理学报, 2015, 64(7): 077301. doi: 10.7498/aps.64.077301
    [13] 余本海, 李盈傧. 椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖. 物理学报, 2012, 61(23): 233202. doi: 10.7498/aps.61.233202
    [14] 余本海, 李盈傧, 汤清彬. 椭圆偏振激光脉冲驱动的氩原子非次序双电离. 物理学报, 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [15] 张东玲, 汤清彬, 余本海, 陈东. 碰撞阈值下氩原子非次序双电离. 物理学报, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [16] 王玮, 孙家法, 刘楣, 刘甦. β型烧绿石结构氧化物超导体AOs2O6(A=K,Rb,Cs)电子能带结构的第一性原理计算. 物理学报, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [17] 王立民, 罗莹, 马本堃. 双量子点分子的电子结构. 物理学报, 2001, 50(2): 278-286. doi: 10.7498/aps.50.278
    [18] 汪鸿伟. 量子阱中的电子关联. 物理学报, 1997, 46(8): 1618-1624. doi: 10.7498/aps.46.1618
    [19] 解士杰, 梅良模, 孙鑫. 电子关联和孤子. 物理学报, 1991, 40(6): 957-961. doi: 10.7498/aps.40.957
    [20] 江启杜, 刘福绥. 较高杂质浓度磁性合金负磁阻的关联对模型. 物理学报, 1986, 35(2): 177-187. doi: 10.7498/aps.35.177
计量
  • 文章访问数:  5123
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-24
  • 修回日期:  2014-12-30
  • 刊出日期:  2015-05-05

/

返回文章
返回