搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间非均匀激光场驱动的原子非次序双电离

李盈傧 张可 陈红梅 康帅杰 李整法 程建国 吴银梦 翟春洋 汤清彬 许景焜 余本海

引用本文:
Citation:

空间非均匀激光场驱动的原子非次序双电离

李盈傧, 张可, 陈红梅, 康帅杰, 李整法, 程建国, 吴银梦, 翟春洋, 汤清彬, 许景焜, 余本海

Nonsequential double ionization of atoms driven by spatially inhomogeneous laser fields

Li Ying-Bin, Zhang Ke, Chen Hong-Mei, Kang Shuai-Jie, Li Zheng-Fa, Cheng Jian-Guo, Wu Yin-Meng, Zhai Chun-Yang, Tang Qing-Bin, Xu Jing-Kun, Yu Ben-Hai
PDF
HTML
导出引用
  • 利用三维经典系综模型, 研究空间非均匀激光场驱动的氙原子非次序双电离, 并对比了空间均匀激光场的情况. 结果显示, 波长较短时, 空间非均匀激光场与空间均匀激光场的非次序双电离的产率较为相近. 随着波长的增大, 较高激光强度时空间非均匀激光场下非次序双电离受到越来越明显的抑制. 相比于空间均匀激光场, 空间非均匀激光场下非次序双电离两电子的末态发射角表现出更强烈的关联特性, 特别在较大的激光波长下, 两电子的末态发射角几乎全部集中在${0^\circ }$附近, 这意味着两电子往往是平行发射到相同方向. 此外, 波长由近红外增大到中红外时, 空间非均匀激光场下非次序双电离的有效再碰撞均由第1个电子的第1次返回主导, 而空间均匀激光场下则呈现由第1次返回主导到第2次返回主导的转变. 进一步, 通过反演分析非次序双电离的经典轨迹, 揭示了空间非均匀激光场下关联电子超快动力学过程的更多细节.
    Using a three-dimensional classical ensemble method, we investigate the nonsequential double ionization (NSDI) of xenon atoms from the near infrared wavelength to the mid-infrared wavelength in spatially inhomogeneous laser fields, and compare the results with those from spatially homogeneous laser fields. The results show that the NSDI probability curves from spatially inhomogeneous laser field and spatially homogeneous laser field at short wavelength are similar to each other. With the laser wavelength increasing, NSDI at the high intensities is more and more suppressed for spatially inhomogeneous laser field.Compared with the result from the spatially homogeneous laser field, the final emission angle of two electrons from the NSDI exhibits a very strongly correlated characteristic in the spatially inhomogeneous field, especially at a longer laser wavelength, the final emission angles of two electrons are almost both concentrated around ${0^\circ }$, meaning that the two electrons are always emitted into the same direction parallelly. Moreover, effective recollision of the NSDI is always dominated by first return of the first electron from the near infrared to the mid-infrared inhomogeneous laser fields, however, the transition from the first return dominance to the second return dominance occurs in the spatially homogeneous laser fields. Further, we reveal the more details of the ultrafast dynamics of the correlated electrons in the spatially inhomogeneous laser field by back-tracing the classical trajectories of NSDI.
      通信作者: 许景焜, 2777394244@qq.com ; 余本海, hnyubenhai@163. com
    • 基金项目: 国家自然科学基金(批准号: 12004323, 12074329, 12247208, 12104389)和信阳师范学院“南湖学者奖励计划”青年项目资助的课题
      Corresponding author: Xu Jing-Kun, 2777394244@qq.com ; Yu Ben-Hai, hnyubenhai@163. com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004323, 12074329, 12247208, 12104389) and the Nanhu Scholars Program for Young Scholars of Xinyang Normal University, China.
    [1]

    Lein M, Hay N, Velotta R, Marangos J P, Knight P L 2002 Phys. Rev. Lett. 88 183903Google Scholar

    [2]

    Ghimire S, Reis D A 2019 Nat. Phys. 15 10

    [3]

    Yang B, Schafer K J, Walker B, Kulander K C, Agostini P, DiMauro L F 1993 Phys. Rev. Lett. 71 3770Google Scholar

    [4]

    Milošević D B, Paulus G G, Becker W 2003 Opt. Express 11 1418Google Scholar

    [5]

    Busuladi M, Gazibegovi-Busuladi A, Miloevi D B, Becker W 2008 Phys. Rev. Lett. 100 203003Google Scholar

    [6]

    He M R, Li Y, Zhou Y M, Li M, Cao W, Lu P X 2018 Phys. Rev. Lett. 120 133204Google Scholar

    [7]

    Zhou Y, Tolstikhin O I, Morishita T 2016 Phys. Rev. Lett. 116 173001Google Scholar

    [8]

    Rudenko A, Jesus V, Ergler T, Zrost K, Ullrich J 2007 Phys. Rev. Lett. 99 263003Google Scholar

    [9]

    Quan W, Hao X L, Wang Y L, Chen Y J, Yu S G, Xu S P, Xiao Z L, Sun R P, Lai X Y, Hu S L, Liu M Q, Shu Z, Wang X D, Li W D, Becker W, Liu X J, Chen J 2017 Phys. Rev. A 96 032511Google Scholar

    [10]

    Huang C, Zhou Y M, Zhang Q B, Lu P X 2013 Opt. Express 21 11382Google Scholar

    [11]

    Tong A H, Liao Q, Zhou Y M, Lu P X 2010 Opt. Express 18 9064Google Scholar

    [12]

    Shaaran T, Augstein B B, Figueira D 2011 Phys. Rev. A 84 013429Google Scholar

    [13]

    Wang Y L, Xu S P, Chen Y J, Kang H P, Lai X Y, Quan W, Liu X J, Hao X L, Li W D, Hu S L, Chen J, Becker W, Chu W, Yao J P, Zeng B, Cheng Y, Xu Z Z 2017 Phys. Rev. A 95 063415Google Scholar

    [14]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [15]

    Feuerstein B, Moshammer R, Fischer D, Dorn A, Schroter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Hohr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Sandner W 2001 Phys. Rev. Lett. 87 043003Google Scholar

    [16]

    Wang Y L, Xu S P, Quan W, Gong C, Lai X Y, Hu S L, Liu M Q, Chen J, Liu X J 2016 Phys. Rev. A 94 053412Google Scholar

    [17]

    Huang C, Zhong M M, Wu Z M 2016 Opt. Express 24 28361Google Scholar

    [18]

    苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚 2022 物理学报 71 193201Google Scholar

    Su J, Liu Z C, Liao J Y, Li Y B, Huang C 2022 Acta Phys. Sin. 71 193201Google Scholar

    [19]

    Herink G, Solli D R, Guide M, Ropers C 2012 Nature 483 190Google Scholar

    [20]

    Ortmann L, Landsman A S 2018 Phys. Rev. A 97 023420Google Scholar

    [21]

    Husakou A, Im S J, Herrmann J 2011 Phys. Rev. A 83 043839Google Scholar

    [22]

    Yavuz I, Bleda E A, Altun Z, Topcu T 2012 Phys. Rev. A 85 013416Google Scholar

    [23]

    Ciappina M F, Biegert J, Quidant R, Lewenstein M 2012 Phys. Rev. A 85 033828Google Scholar

    [24]

    Ortmann L, Pérez-Hernández J A, Ciappina M F, Schötz J, Chacón A, Zeraouli G, Kling M F, Roso L, Lewenstein M, Landsman A S 2017 Phys. Rev. Lett. 119 053204Google Scholar

    [25]

    Ciappina M F, Pérez-Hernández J, Shaaran T, Roso L, Lewenstein M 2014 Phys. Rev. A 89 013409Google Scholar

    [26]

    Chacón A, Ortmann L, Cucchietti F, Suárez N, Pérez-Hernández J A, Ciappina M F, Landsman A S, Lewenstein M 2017 Appl. Phys. B 123 116Google Scholar

    [27]

    Xu J K, Li Y B, Zhou Y B, Chen Y M, Li M, Yu B H, Lu P X 2022 Opt. Express 30 15951Google Scholar

    [28]

    Liang J T, Zhou Y M, Liao Y J, Jiang W C, Li M, Lu P X 2022 Ultrafast Sci. 2022 9842716Google Scholar

    [29]

    Ho P J, Eberly J H 2005 Phys. Rev. Lett. 95 193002Google Scholar

    [30]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008Google Scholar

    [31]

    Li Y B, Xu J K, Yu B H, Wang X 2020 Opt. Express 28 7341Google Scholar

    [32]

    Chen Z H, Su J, Zeng X, Huang X F, Li Y B, Huang C 2021 Opt. Express 29 29576Google Scholar

    [33]

    Li Y B, Yu B H, Tang Q B, Wang X, Hua D Y, Tong A H, Jiang C H, Ge G X, Li Y C, Wan J G 2016 Opt. Express 24 6469Google Scholar

    [34]

    Li Y B, Qin L L, Liu A H, Zhang K, Tang Q B, Zhai C Y, Xu J K, Chen S, Yu B H, Chen J 2022 Chin. Phys. Lett. 39 093201Google Scholar

    [35]

    李盈傧, 秦玲玲, 陈红梅, 李怡涵, 何锦锦, 史璐珂, 翟春洋, 汤清彬, 刘爱华, 余本海 2022 物理学报 71 043201Google Scholar

    Li Y B, Qin L L, Chen H M, Li Y H, He J J, Shi L K, Zhai C, Y Tang Q B, Liu A H, Yu B H 2022 Acta Phys. Sin. 71 043201Google Scholar

    [36]

    Ciappina M F, Pérez-Hernández J, Shaaran T, Biegert J, Quidant R, Lewenstein M 2012 Phys. Rev. A 86 023413Google Scholar

    [37]

    Wang Z, Lan P F, Luo J H, He L X, Lu P X 2013 Phys. Rev. A 88 063838Google Scholar

    [38]

    Chacón A, Ciappina M F, Lewenstein M 2016 Phys. Rev. A 94 043407Google Scholar

    [39]

    Gao X Z, Landsman A S, Wang H, S Huang P, Zhang Y P, Wang B, Wang Y S, Cao H B, Fu Y X, Pi L W 2021 New J. Phys. 23 113017Google Scholar

    [40]

    Yavuz I, Ciappina M F, Chacón A, Altun Z, Kling M F, Lewenstein M 2016 Phys. Rev. A 93 033404Google Scholar

    [41]

    Chen Y K, Zhou Y M, Tan J, Li M, Cao W, Lu P X 2021 Phys. Rev. A 104 043107Google Scholar

    [42]

    Li Y, Wang X, Yu B, Tang Q, Wang G, Wan J 2016 Sci. Rep. 6 37413Google Scholar

  • 图 1  对于不同波长, 空间非均匀激光场 (蓝色方块) 和空间均匀激光场 (红色圆圈) 下DI产率随激光强度的变化 (a) 800 nm; (b) 1600 nm; (c) 3200 nm; (d) 4800 nm

    Fig. 1.  Probabilities of DI as a function of laser intensity for the spatially inhomogeneous (blue squares) and spatially homogeneous (red circles) laser fields at different wavelengths: (a) 800 nm; (b) 1600 nm; (c) 3200 nm; (d) 4800 nm.

    图 2  空间非均匀激光场和空间均匀激光场中返回电子在碰撞前 0.03T 的动能与再碰撞时间的关系 (激光强度均为4×1013 W/cm2) (a)—(d) ε = 0.003; (e)—(h) ε = 0

    Fig. 2.  Kinetic energy of the returning electron before the recollision 0.03T vs. the recollision time for the spatially inhomogeneous and spatially homogeneous laser fields (Laser intensities are both 4×1013 W/cm2): (a)–(d) ε = 0.003; (e)–(h) ε = 0.

    图 3  关联电子对在激光脉冲结束时的发射角分布 (a)—(d) 空间非均匀激光场; (e)—(h) 空间均匀激光场

    Fig. 3.  Distribution of the emitting angle between the correlated electron pairs at the end of the laser pulses: (a)–(d) Spatially inhomogeneous laser fields; (e)–(h) spatially homogeneous laser fields.

    图 4  空间非均匀激光场和空间均匀激光场下末态电子的横向动量和纵向动量分布 (激光波长均为4800 nm) (a) ε = 0.003; (b) ε = 0

    Fig. 4.  Transverse and longitudinal momentum distributions of final state electrons for the spatially inhomogeneous and spatially homogeneous laser fields (Laser wavelengths are both 4800 nm): (a) ε = 0.003; (b) ε = 0.

    图 5  空间非均匀激光场和空间均匀激光场下飞行时间 (a), (c)及时间延迟 (b), (d)的统计分布 (a), (b) ε = 0.003; (c), (d) ε = 0 (图(b), (d)中竖直实线对应0.25个光周期)

    Fig. 5.  Distributions of travel time (a), (c) and time delay (b), (d) for the spatially inhomogeneous and spatially homogeneous laser fields: (a), (b) ε = 0.003; (c), (d) ε = 0 (Vertical solid line in panels (b) and (d) corresponds to 0.25 cycles).

    图 6  电子沿z轴正方向 (红线) 和负方向 (蓝线) 电离的演化轨迹. 1st, 2nd和3rd分别代表电子第1次、第2次和第3次返回母离子核, 黑色虚线代表原点处振荡的激光电场 (a), (b) 对应的激光波长分别为 800 nm和3200 nm, 激光强度均为4×1013 W/cm2

    Fig. 6.  Evolution trajectories of electron ionization along positive z direction (red lines) and the negative z direction (blue lines). 1st, 2nd and 3rd represent the first, second and third return of the electrons to the parent ion core. The black dashed lines show the oscillating laser electric field at the origin: (a), (b) Correspond to wavelengths of 800 nm and 3200 nm, respectively and the laser intensities are both 4×1013 W/cm2.

    图 7  (a), (b)两个电子与母离子核的距离随时间的演化; (c), (d)两个电子沿z轴的速度随时间的演化; (a), (c) 沿z轴负方向电离并发生一次返回的电子运动轨迹; (b), (d) 沿z轴负方向电离发生二次返回的电子运动轨迹

    Fig. 7.  (a), (b) Distance of two electrons from the parent ion core as a function of time; (c), (d) velocity of two electrons along the z direction as a function of time; (a), (c) trajectory of electron ionization along negative z direction with one return; (b), (d) trajectory of electron ionization along negative z direction with secondary return.

  • [1]

    Lein M, Hay N, Velotta R, Marangos J P, Knight P L 2002 Phys. Rev. Lett. 88 183903Google Scholar

    [2]

    Ghimire S, Reis D A 2019 Nat. Phys. 15 10

    [3]

    Yang B, Schafer K J, Walker B, Kulander K C, Agostini P, DiMauro L F 1993 Phys. Rev. Lett. 71 3770Google Scholar

    [4]

    Milošević D B, Paulus G G, Becker W 2003 Opt. Express 11 1418Google Scholar

    [5]

    Busuladi M, Gazibegovi-Busuladi A, Miloevi D B, Becker W 2008 Phys. Rev. Lett. 100 203003Google Scholar

    [6]

    He M R, Li Y, Zhou Y M, Li M, Cao W, Lu P X 2018 Phys. Rev. Lett. 120 133204Google Scholar

    [7]

    Zhou Y, Tolstikhin O I, Morishita T 2016 Phys. Rev. Lett. 116 173001Google Scholar

    [8]

    Rudenko A, Jesus V, Ergler T, Zrost K, Ullrich J 2007 Phys. Rev. Lett. 99 263003Google Scholar

    [9]

    Quan W, Hao X L, Wang Y L, Chen Y J, Yu S G, Xu S P, Xiao Z L, Sun R P, Lai X Y, Hu S L, Liu M Q, Shu Z, Wang X D, Li W D, Becker W, Liu X J, Chen J 2017 Phys. Rev. A 96 032511Google Scholar

    [10]

    Huang C, Zhou Y M, Zhang Q B, Lu P X 2013 Opt. Express 21 11382Google Scholar

    [11]

    Tong A H, Liao Q, Zhou Y M, Lu P X 2010 Opt. Express 18 9064Google Scholar

    [12]

    Shaaran T, Augstein B B, Figueira D 2011 Phys. Rev. A 84 013429Google Scholar

    [13]

    Wang Y L, Xu S P, Chen Y J, Kang H P, Lai X Y, Quan W, Liu X J, Hao X L, Li W D, Hu S L, Chen J, Becker W, Chu W, Yao J P, Zeng B, Cheng Y, Xu Z Z 2017 Phys. Rev. A 95 063415Google Scholar

    [14]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [15]

    Feuerstein B, Moshammer R, Fischer D, Dorn A, Schroter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Hohr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Sandner W 2001 Phys. Rev. Lett. 87 043003Google Scholar

    [16]

    Wang Y L, Xu S P, Quan W, Gong C, Lai X Y, Hu S L, Liu M Q, Chen J, Liu X J 2016 Phys. Rev. A 94 053412Google Scholar

    [17]

    Huang C, Zhong M M, Wu Z M 2016 Opt. Express 24 28361Google Scholar

    [18]

    苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚 2022 物理学报 71 193201Google Scholar

    Su J, Liu Z C, Liao J Y, Li Y B, Huang C 2022 Acta Phys. Sin. 71 193201Google Scholar

    [19]

    Herink G, Solli D R, Guide M, Ropers C 2012 Nature 483 190Google Scholar

    [20]

    Ortmann L, Landsman A S 2018 Phys. Rev. A 97 023420Google Scholar

    [21]

    Husakou A, Im S J, Herrmann J 2011 Phys. Rev. A 83 043839Google Scholar

    [22]

    Yavuz I, Bleda E A, Altun Z, Topcu T 2012 Phys. Rev. A 85 013416Google Scholar

    [23]

    Ciappina M F, Biegert J, Quidant R, Lewenstein M 2012 Phys. Rev. A 85 033828Google Scholar

    [24]

    Ortmann L, Pérez-Hernández J A, Ciappina M F, Schötz J, Chacón A, Zeraouli G, Kling M F, Roso L, Lewenstein M, Landsman A S 2017 Phys. Rev. Lett. 119 053204Google Scholar

    [25]

    Ciappina M F, Pérez-Hernández J, Shaaran T, Roso L, Lewenstein M 2014 Phys. Rev. A 89 013409Google Scholar

    [26]

    Chacón A, Ortmann L, Cucchietti F, Suárez N, Pérez-Hernández J A, Ciappina M F, Landsman A S, Lewenstein M 2017 Appl. Phys. B 123 116Google Scholar

    [27]

    Xu J K, Li Y B, Zhou Y B, Chen Y M, Li M, Yu B H, Lu P X 2022 Opt. Express 30 15951Google Scholar

    [28]

    Liang J T, Zhou Y M, Liao Y J, Jiang W C, Li M, Lu P X 2022 Ultrafast Sci. 2022 9842716Google Scholar

    [29]

    Ho P J, Eberly J H 2005 Phys. Rev. Lett. 95 193002Google Scholar

    [30]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008Google Scholar

    [31]

    Li Y B, Xu J K, Yu B H, Wang X 2020 Opt. Express 28 7341Google Scholar

    [32]

    Chen Z H, Su J, Zeng X, Huang X F, Li Y B, Huang C 2021 Opt. Express 29 29576Google Scholar

    [33]

    Li Y B, Yu B H, Tang Q B, Wang X, Hua D Y, Tong A H, Jiang C H, Ge G X, Li Y C, Wan J G 2016 Opt. Express 24 6469Google Scholar

    [34]

    Li Y B, Qin L L, Liu A H, Zhang K, Tang Q B, Zhai C Y, Xu J K, Chen S, Yu B H, Chen J 2022 Chin. Phys. Lett. 39 093201Google Scholar

    [35]

    李盈傧, 秦玲玲, 陈红梅, 李怡涵, 何锦锦, 史璐珂, 翟春洋, 汤清彬, 刘爱华, 余本海 2022 物理学报 71 043201Google Scholar

    Li Y B, Qin L L, Chen H M, Li Y H, He J J, Shi L K, Zhai C, Y Tang Q B, Liu A H, Yu B H 2022 Acta Phys. Sin. 71 043201Google Scholar

    [36]

    Ciappina M F, Pérez-Hernández J, Shaaran T, Biegert J, Quidant R, Lewenstein M 2012 Phys. Rev. A 86 023413Google Scholar

    [37]

    Wang Z, Lan P F, Luo J H, He L X, Lu P X 2013 Phys. Rev. A 88 063838Google Scholar

    [38]

    Chacón A, Ciappina M F, Lewenstein M 2016 Phys. Rev. A 94 043407Google Scholar

    [39]

    Gao X Z, Landsman A S, Wang H, S Huang P, Zhang Y P, Wang B, Wang Y S, Cao H B, Fu Y X, Pi L W 2021 New J. Phys. 23 113017Google Scholar

    [40]

    Yavuz I, Ciappina M F, Chacón A, Altun Z, Kling M F, Lewenstein M 2016 Phys. Rev. A 93 033404Google Scholar

    [41]

    Chen Y K, Zhou Y M, Tan J, Li M, Cao W, Lu P X 2021 Phys. Rev. A 104 043107Google Scholar

    [42]

    Li Y, Wang X, Yu B, Tang Q, Wang G, Wan J 2016 Sci. Rep. 6 37413Google Scholar

  • [1] 葛振杰, 苏旭, 白丽华. 反旋双色椭圆偏振激光场中Ar原子的非序列双电离. 物理学报, 2024, 73(9): 093201. doi: 10.7498/aps.73.20231583
    [2] 贺佟佟, 刘子超, 李盈傧, 黄诚. 平行偏振三色场对原子非次序双电离的调控. 物理学报, 2024, 73(16): 163201. doi: 10.7498/aps.73.20240737
    [3] 刘义俊, 陈以威, 朱雨剑, 黄焱, 安冬冬, 李庆鑫, 甘祺康, 朱旺, 宋珺威, 王开元, 魏凌楠, 宗其军, 刘硕涵, 李世伟, 刘芝, 张琪, 徐瑛海, 曹新宇, 杨奥, 王浩林, 杨冰, Andy Shen, 于葛亮, 王雷. 转角双层-双层石墨烯中同位旋极化的C = 4陈绝缘态. 物理学报, 2023, 72(14): 147303. doi: 10.7498/aps.72.20230497
    [4] 钟国华, 林海青. 芳香超导体: 电-声耦合与电子关联. 物理学报, 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [5] 苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚. 反旋双色椭偏场中Ar非次序双电离电子关联的强度依赖. 物理学报, 2022, 71(19): 193201. doi: 10.7498/aps.71.20221044
    [6] 曾雪, 苏杰, 黄雪飞, 庞惠玲, 黄诚. 同向旋转双色圆偏场中非次序双电离的频率比依赖. 物理学报, 2021, 70(24): 243201. doi: 10.7498/aps.70.20211112
    [7] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖. 物理学报, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [8] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究. 物理学报, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [9] 张斌, 赵健, 赵增秀. 基于多组态含时Hartree-Fock方法研究电子关联对于H2分子强场电离的影响. 物理学报, 2018, 67(10): 103301. doi: 10.7498/aps.67.20172701
    [10] 黄诚, 钟明敏, 吴正茂. 低强度周期量级脉冲驱动排列分子的非次序双电离. 物理学报, 2016, 65(8): 083301. doi: 10.7498/aps.65.083301
    [11] 吴绍全, 方栋开, 赵国平. 电子关联效应对平行双量子点系统磁输运性质的影响. 物理学报, 2015, 64(10): 107201. doi: 10.7498/aps.64.107201
    [12] 辛国国, 赵清, 刘杰. 非序列双电离向饱和区过渡的电子最大关联度. 物理学报, 2012, 61(13): 133201. doi: 10.7498/aps.61.133201
    [13] 童爱红, 冯国强, 邓永菊. 氦原子非次序双电离对正交双色场强度比的依赖关系. 物理学报, 2012, 61(9): 093303. doi: 10.7498/aps.61.093303
    [14] 余本海, 李盈傧. 椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖. 物理学报, 2012, 61(23): 233202. doi: 10.7498/aps.61.233202
    [15] 余本海, 李盈傧, 汤清彬. 椭圆偏振激光脉冲驱动的氩原子非次序双电离. 物理学报, 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [16] 童爱红, 廖青, 周月明, 陆培祥. 不同分子取向下氢分子非次序双电离对核间距的依赖关系. 物理学报, 2011, 60(4): 043301. doi: 10.7498/aps.60.043301
    [17] 张东玲, 汤清彬, 余本海, 陈东. 碰撞阈值下氩原子非次序双电离. 物理学报, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [18] 汤清彬, 张东玲, 余本海, 陈东. 周期量级激光脉冲驱动下非次序双电离的三维经典系综模拟. 物理学报, 2010, 59(11): 7775-7781. doi: 10.7498/aps.59.7775
    [19] 王玮, 孙家法, 刘楣, 刘甦. β型烧绿石结构氧化物超导体AOs2O6(A=K,Rb,Cs)电子能带结构的第一性原理计算. 物理学报, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [20] 李洪云, 王兵兵, 蒋红兵, 陈 京, 李晓峰, 刘 杰, 龚旗煌, 傅盘铭. 静电场对强激光场非序列双电子电离的影响. 物理学报, 2008, 57(1): 124-131. doi: 10.7498/aps.57.124
计量
  • 文章访问数:  2448
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-07
  • 修回日期:  2023-05-28
  • 上网日期:  2023-06-20
  • 刊出日期:  2023-08-20

/

返回文章
返回