搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

芳香超导体: 电-声耦合与电子关联

钟国华 林海青

引用本文:
Citation:

芳香超导体: 电-声耦合与电子关联

钟国华, 林海青

Aromatic superconductors: Electron-phonon coupling and electronic correlations

Zhong Guo-Hua, Lin Hai-Qing
PDF
HTML
导出引用
  • 芳香超导体是近年来发现的一类新型高温超导体, 超导转变温度随芳香分子尺寸的增大而升高, 这引起了的实验和理论研究的广泛关注. 关于其超导特性的驱动机制是电-声耦合还是电子关联效应等相关问题吸引了国内外研究组的极大兴趣. 本文简述了芳香超导体的研究进展, 介绍了金属掺杂芳香化合物后展现出的丰富超导现象, 从电-声耦合和电子关联角度, 讨论了国内外研究组对芳香化合物超导性的理解, 及其对探索具有更高转变温度的芳香高温超导体的意义, 最后介绍了目前领域内面临的挑战.
    Aromatic superconductors are a new type of high-temperature superconductor discovered in recent years. The superconducting transition temperature (Tc) increases with the size of aromatic molecule increasing, which has attracted widespread attention of experimental and theoretical researchers. The driving mechanism for such a superconductivity, whether it is dominated by electron-phonon coupling or electronic correlation effects, has aroused great interest of many research groups. This paper briefly introduces the rich superconducting phenomena of metal doped aromatic compounds. From the perspectives of electron-phonon coupling or electronic correlations, the superconductivity of aromatic compounds is discussed, which is helpful in exploring aromatic superconductors with higher Tc. The challenges currently faced in the field are also introduced.The rest of this paper is organized as follows. We first introduce the existence of abundant superconducting phases in the experiment of metal doped aromatic compounds. Different doping concentrations of metal cause superconducting phases with different Tc values, especially the highest Tc value of the superconducting phase increases with the size of aromatic molecule increasing. Theoretical prediction shows that all aromatic hydrocarbon superconductors have a low-Tc superconducting phase in a range of 5–7 K, which is a common feature. For systems with few benzene rings (such as benzene, naphthalene, and phenanthrene crystals), only low-Tc phase of 5–7 K exists, while in systems with multiple benzene rings (such as picene, dibenzopentacene, and others with the number of benzene rings more than 5), there are multiple superconducting phases; the highest Tc in long-benzene-ring system depends not only on the number of benzene rings, but also on the chain size of organic molecule. Further research indicates that low-Tc phase is induced by doping about 2 electrons and has good stability, while high-Tc phase results from doping 3 electrons and has slightly poorer stability.Then, the electron-phonon coupling characteristics and electron-electron exchange correlation effects in aromatic compound superconductors are discussed. For low-Tc phases, the values of electronic density of states at the Fermi level are comparable to each other and relatively low, resulting in weak electron-phonon interactions. However, the Tc value predicted by this electron-phonon coupling mechanism is in good agreement with experimental value, indicating that the electron-phonon coupling is sufficient to describe the superconductivity of low-Tc phases. For high-Tc phases, the big values of electron density of states at the Fermi level imply strong electron-phonon interactions, and this electron-phonon coupling increases with the size of organic molecule increasing. However, the Tc value predicted only by the electron-phonon mechanism is lower than the experimental value. The study of electron-electron exchange correlation effect of aromatic compounds shows that the electronic correlation effect increases with the size of aromatic molecule increasing, which is consistent with the increase of Tc maximum value with the size of aromatic molecule increasing in a long-benzene-ring system. This indicates that the superconductivity of high-Tc phase is driven by both the electron-phonon mechanism and the electronic correlation effect. This understanding of superconductivity is significant for exploring and discovering aromatic superconductors with higher transition temperatures.Finally, comprehensive physical models and methods are required in this paper in order to gain a thorough understanding of the superconductivity of aromatic compound.
      通信作者: 林海青, hqlin@zju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12088101, 12074401)资助的课题.
      Corresponding author: Lin Hai-Qing, hqlin@zju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12088101, 12074401).
    [1]

    Schilling A, Cantoni M, Guo J D, Ott H R 1993 Nature 363 56Google Scholar

    [2]

    Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets M I 2019 Nature 569 528Google Scholar

    [3]

    Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J 2019 Phys. Rev. Lett. 122 027001Google Scholar

    [4]

    Little W A 1964 Phys. Rev. 134 A1416Google Scholar

    [5]

    Ginzburg V L 1964 Phys. Lett. 13 101Google Scholar

    [6]

    Taniguchi H, Miyashita M, Uchiyama K, Satoh K, Mori N, Okamoto H, Miyagawa K, Kanoda K, Hedo M, Uwatoko Y 2003 J. Phys. Soc. Jpn. 72 468Google Scholar

    [7]

    Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H, Fujiwara A, Yamaji M, Kawasaki N, Maniwa Y, Kubozono Y 2010 Nature 464 76Google Scholar

    [8]

    Wang X F, Liu R H, Gui Z, Xie Y L, Yan Y J, Ying J J, Luo X G, Chen X H 2011 Nat. Commun. 2 507Google Scholar

    [9]

    Xue M Q, Cao T B, Wang D M, Wu Y, Yang H X, Dong X L, He J B, Li F W, Chen G F 2012 Sci. Rep. 2 389Google Scholar

    [10]

    Kubozono Y, Mitamura M, Lee X, He X, Yamanari Y, Takahashi Y, Suzuki Y, Kaji Y, Eguchi R, Akaike K, Kambe T, Okamoto H, Fujiwara A, Kato T, Kosugi T, Aoki H 2011 Phys. Chem. Chem. Phys. 13 16476Google Scholar

    [11]

    Zhong G H, Chen X J, Lin H Q 2019 Front. Phys. 7 52Google Scholar

    [12]

    Kato T, Yoshizawa K, Hirao K 2002 J. Chem. Phys. 116 3420Google Scholar

    [13]

    Kato T, Kambe T, Kubozono Y 2011 Phys. Rev. Lett. 107 077001Google Scholar

    [14]

    Casula M, Calandra M, Profeta G, Mauri F 2011 Phys. Rev. Lett. 107 137006Google Scholar

    [15]

    Giovannetti G, Capone M 2011 Phys. Rev. B 83 134508Google Scholar

    [16]

    Kim M, Min B I 2011 Phys. Rev. B 83 214510Google Scholar

    [17]

    Durand P, Darling G R, Dubitsky Y, Zaopo A, Rosseinsky M J 2003 Nature Mater. 2 605Google Scholar

    [18]

    Wang X H, Zhong G H, Yan X W, Chen X J, Lin H Q 2017 J. Phys. Chem. Solids 104 56Google Scholar

    [19]

    Zhong G H, Yang D Y, Zhang K, Wang R S, Zhang C, Lin H Q, Chen X J 2018 Phys. Chem. Chem. Phys. 20 25217Google Scholar

    [20]

    Wang R S, Gao Y, Huang Z B, Chen X J 2017 Superconductivity in P-Terphenyl arXiv: 1703.05803

    [21]

    Yan J F, Zhong G H, Wang R S, Zhang K, Lin H Q, Chen X J 2019 J. Phys. Chem. Lett. 10 40Google Scholar

    [22]

    Huang G, Zhong G H, Wang R S, Han J X, Lin H Q, Chen X J 2019 Carbon 143 837Google Scholar

    [23]

    Wang R S, Cheng J, Wu X L, Yang H, Chen X J, Gao Y, Huang Z B 2018 J. Chem. Phys. 149 144502Google Scholar

    [24]

    Peng D, Wang R S, Chen X J 2020 J. Phys. Chem. C 124 906Google Scholar

    [25]

    Wang R S, Zhang K, Zhong G H, Chen X J 2023 Mater. Sci. Eng. B 288 116155Google Scholar

    [26]

    Wang R S, Gao Y, Huang Z B, Chen X J 2017 Superconductivity at 43 K in a single C-C bond linked terphenyl arXiv: 1703.05804

    [27]

    Wang R S, Gao Y, Huang Z B, Chen X J 2017 Superconductivity above 120 Kelvin in a Chain Link Molecule arXiv: 1703.06641

    [28]

    Zhong G H, Wang X H, Wang R S, Han J X, Zhang C, Chen X J, Lin H Q 2018 J. Phys. Chem. C 122 3801Google Scholar

    [29]

    Li H, Zhou X, Parham S, Nummy T, Griffith J, Gordon K N, Chronister E L, Dessau D S 2019 Phys. Rev. B 100 064511Google Scholar

    [30]

    Neha P, Bhardwaj A, Sahu V, Patnaik S 2018 Physica C 554 1Google Scholar

    [31]

    Liu W H, Lin H, Kang R Z, Zhu X Y, Zhang Y, Zheng S X, Wen H H 2017 Phys. Rev. B 96 224501Google Scholar

    [32]

    Pinto N, Di Nicola C, Trapananti A, Minicucci M, Di Cicco A, Marcelli A, Bianconi A, Marchetti F, Pettinari C, Perali A 2020 Condens. Matter 5 78Google Scholar

  • 图 1  (a) 超导转变温度Tc与芳香分子晶体中有机分子所含苯环数的关系[9]; (b) 电-声耦合常数随有机分子中碳原子数的变化[12]; (c) 电-声相互作用随有机分子中碳原子数的变化, 插图表示电-声相互作用与碳原子倒数呈线性关系[13]

    Fig. 1.  (a) The relationship between the superconducting transition temperature Tc and the number of benzene rings in organic molecules in aromatic molecular crystals[9]; (b) the variation of the electron-phonon coupling constant with the number of carbon atoms in organic molecules[12]; (c) the electron-phonon interaction varies with the number of carbon atoms in organic molecules, and the inset shows a linear relationship between the electron-phonon interaction and the reciprocal of carbon atoms[13].

    图 2  各种芳香分子晶体在金属掺杂后的超导转变温度Tc随苯环数n的变化[11], 灰色区域暗示了5—7 K的超导转变温度区间, 实心红色方块表示林海青等[11]的预测结果, 而空心红色方块表示Casula等[14]的预测结果, 其他数据来自实验

    Fig. 2.  The superconducting transition temperature Tc of aromatic molecular crystals doped by metal varies with the number of benzene rings n [11]. The gray area indicates a superconducting transition temperature region of 5—7 K. The solid red squares represent the prediction results of Lin et al.[11], while the hollow red squares represent the prediction results of Casula et al.[14]. Other data come from experiments.

    图 3  在芳香分子晶体中, 有效在位库仑能与带宽的比值(Ueff/W)随介电常数的变化. 有机分子的右上标I指分子中苯环呈zigzag排列, II指有机分子构型类似于1, 2:8, 9-二苯并五苯[11]

    Fig. 3.  In aromatic molecular crystals, the ratio of effective on-site Coulombic energy to bandwidth (Ueff/W) varies with the dielectric constant. The superscript I of organic molecules refers to the zigzag arrangement of the benzene rings in the molecule, while II refers to the configuration of organic molecules similar to 1, 2:8, 9-dibenzopentacene [11].

    表 1  采用标准的密度泛函(DFT)方法预测芳香有机分子晶体的带隙(Eg)小于实验值. 采用杂化密度泛函(HSE)方法预测获得与实验一致的带隙, 所需的精确交换作用参数υ. 有机分子的右上标I指分子中苯环呈zigzag排列, II指有机分子构型类似于1, 2:8, 9-二苯并五苯[11]

    Table 1.  The band gap (Eg) of aromatic organic molecular crystals predicted by standard density functional theory (DFT) method is smaller than the experimental values. υ is the adopted precise exchange interaction parameters when obtaining the Eg which is consistent with experimental values. The superscript I of organic molecules refers to the zigzag arrangement of the benzene rings in the molecule, while II refers to the configuration of organic molecules similar to 1, 2:8, 9-dibenzopentacene [11].

    C14H10IC18H12I(II)C22H14IC22H14IIC26H16IC26H16IIC30H18IC30H18II
    Eg (expt.)/eV3.163.33.33.33.153.23.23.2
    Eg (DFT)/eV2.802.402.312.202.071.822.041.03
    υ0.100.260.300.400.360.550.370.91
    下载: 导出CSV
  • [1]

    Schilling A, Cantoni M, Guo J D, Ott H R 1993 Nature 363 56Google Scholar

    [2]

    Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets M I 2019 Nature 569 528Google Scholar

    [3]

    Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J 2019 Phys. Rev. Lett. 122 027001Google Scholar

    [4]

    Little W A 1964 Phys. Rev. 134 A1416Google Scholar

    [5]

    Ginzburg V L 1964 Phys. Lett. 13 101Google Scholar

    [6]

    Taniguchi H, Miyashita M, Uchiyama K, Satoh K, Mori N, Okamoto H, Miyagawa K, Kanoda K, Hedo M, Uwatoko Y 2003 J. Phys. Soc. Jpn. 72 468Google Scholar

    [7]

    Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H, Fujiwara A, Yamaji M, Kawasaki N, Maniwa Y, Kubozono Y 2010 Nature 464 76Google Scholar

    [8]

    Wang X F, Liu R H, Gui Z, Xie Y L, Yan Y J, Ying J J, Luo X G, Chen X H 2011 Nat. Commun. 2 507Google Scholar

    [9]

    Xue M Q, Cao T B, Wang D M, Wu Y, Yang H X, Dong X L, He J B, Li F W, Chen G F 2012 Sci. Rep. 2 389Google Scholar

    [10]

    Kubozono Y, Mitamura M, Lee X, He X, Yamanari Y, Takahashi Y, Suzuki Y, Kaji Y, Eguchi R, Akaike K, Kambe T, Okamoto H, Fujiwara A, Kato T, Kosugi T, Aoki H 2011 Phys. Chem. Chem. Phys. 13 16476Google Scholar

    [11]

    Zhong G H, Chen X J, Lin H Q 2019 Front. Phys. 7 52Google Scholar

    [12]

    Kato T, Yoshizawa K, Hirao K 2002 J. Chem. Phys. 116 3420Google Scholar

    [13]

    Kato T, Kambe T, Kubozono Y 2011 Phys. Rev. Lett. 107 077001Google Scholar

    [14]

    Casula M, Calandra M, Profeta G, Mauri F 2011 Phys. Rev. Lett. 107 137006Google Scholar

    [15]

    Giovannetti G, Capone M 2011 Phys. Rev. B 83 134508Google Scholar

    [16]

    Kim M, Min B I 2011 Phys. Rev. B 83 214510Google Scholar

    [17]

    Durand P, Darling G R, Dubitsky Y, Zaopo A, Rosseinsky M J 2003 Nature Mater. 2 605Google Scholar

    [18]

    Wang X H, Zhong G H, Yan X W, Chen X J, Lin H Q 2017 J. Phys. Chem. Solids 104 56Google Scholar

    [19]

    Zhong G H, Yang D Y, Zhang K, Wang R S, Zhang C, Lin H Q, Chen X J 2018 Phys. Chem. Chem. Phys. 20 25217Google Scholar

    [20]

    Wang R S, Gao Y, Huang Z B, Chen X J 2017 Superconductivity in P-Terphenyl arXiv: 1703.05803

    [21]

    Yan J F, Zhong G H, Wang R S, Zhang K, Lin H Q, Chen X J 2019 J. Phys. Chem. Lett. 10 40Google Scholar

    [22]

    Huang G, Zhong G H, Wang R S, Han J X, Lin H Q, Chen X J 2019 Carbon 143 837Google Scholar

    [23]

    Wang R S, Cheng J, Wu X L, Yang H, Chen X J, Gao Y, Huang Z B 2018 J. Chem. Phys. 149 144502Google Scholar

    [24]

    Peng D, Wang R S, Chen X J 2020 J. Phys. Chem. C 124 906Google Scholar

    [25]

    Wang R S, Zhang K, Zhong G H, Chen X J 2023 Mater. Sci. Eng. B 288 116155Google Scholar

    [26]

    Wang R S, Gao Y, Huang Z B, Chen X J 2017 Superconductivity at 43 K in a single C-C bond linked terphenyl arXiv: 1703.05804

    [27]

    Wang R S, Gao Y, Huang Z B, Chen X J 2017 Superconductivity above 120 Kelvin in a Chain Link Molecule arXiv: 1703.06641

    [28]

    Zhong G H, Wang X H, Wang R S, Han J X, Zhang C, Chen X J, Lin H Q 2018 J. Phys. Chem. C 122 3801Google Scholar

    [29]

    Li H, Zhou X, Parham S, Nummy T, Griffith J, Gordon K N, Chronister E L, Dessau D S 2019 Phys. Rev. B 100 064511Google Scholar

    [30]

    Neha P, Bhardwaj A, Sahu V, Patnaik S 2018 Physica C 554 1Google Scholar

    [31]

    Liu W H, Lin H, Kang R Z, Zhu X Y, Zhang Y, Zheng S X, Wen H H 2017 Phys. Rev. B 96 224501Google Scholar

    [32]

    Pinto N, Di Nicola C, Trapananti A, Minicucci M, Di Cicco A, Marcelli A, Bianconi A, Marchetti F, Pettinari C, Perali A 2020 Condens. Matter 5 78Google Scholar

  • [1] 李永恺, 刘锦锦, 张鑫, 朱鹏, 杨柳, 张钰琪, 吴黄宇, 王秩伟. Kagome超导体AV3Sb5(A=K,Rb,Cs)的掺杂效应. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231954
    [2] 郭静, 吴奇, 孙力玲. 抵御大变形超导体的发现. 物理学报, 2023, 72(23): 237401. doi: 10.7498/aps.72.20231341
    [3] 金士锋, 郭建刚, 王刚, 陈小龙. 新型FeSe基超导材料研究进展. 物理学报, 2018, 67(20): 207412. doi: 10.7498/aps.67.20181701
    [4] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究. 物理学报, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [5] 衣玮, 吴奇, 孙力玲. 压力下铁砷基化合物的超导电性研究. 物理学报, 2017, 66(3): 037402. doi: 10.7498/aps.66.037402
    [6] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田. 高压下富氢化合物的结构与奇异超导电性. 物理学报, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
    [7] 高淼, 孔鑫, 卢仲毅, 向涛. Li2C2中电声耦合及超导电性的第一性原理计算研究. 物理学报, 2015, 64(21): 214701. doi: 10.7498/aps.64.214701
    [8] 王玮, 尹新国. 铁基氟化物超导体SrFe1-xCoxAsF(x=0, 0.125)声子特性的第一性原理计算研究. 物理学报, 2014, 63(9): 097401. doi: 10.7498/aps.63.097401
    [9] 孙家法, 王玮. 型烧绿石氧化物超导体AOs2O6 (A=K, Rb) 的声子软化与超导电性. 物理学报, 2012, 61(13): 137402. doi: 10.7498/aps.61.137402
    [10] 李斌, 邢钟文, 刘楣. LiFeAs超导体中磁性与声子软化. 物理学报, 2011, 60(7): 077402. doi: 10.7498/aps.60.077402
    [11] 高鹏举, 章文贡, 陈淑卿, 周秀华, 肖丽足. YBCO/聚丙烯腈杂化膜及其超导性研究. 物理学报, 2010, 59(1): 583-586. doi: 10.7498/aps.59.583
    [12] 王玮, 孙家法, 刘楣, 刘甦. β型烧绿石结构氧化物超导体AOs2O6(A=K,Rb,Cs)电子能带结构的第一性原理计算. 物理学报, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [13] 祖 敏, 张鹰子, 闻海虎. 薄膜厚度对La1.85Sr0.15CuO4薄膜结构和超导电性的影响. 物理学报, 2008, 57(11): 7257-7261. doi: 10.7498/aps.57.7257
    [14] 舒华兵, 刘 甦, 马 荣, 刘 楣. 第一性原理计算MgB2薄膜拉伸对超导电性的影响. 物理学报, 2007, 56(12): 7262-7265. doi: 10.7498/aps.56.7262
    [15] 马 荣, 黄桂芹, 刘 楣. 三元硅化物CaAlSi的结构和超导电性. 物理学报, 2007, 56(8): 4960-4964. doi: 10.7498/aps.56.4960
    [16] 马 荣, 张加宏, 杜锦丽, 刘 甦, 刘 楣. 新超导体MgCNi3的虚晶掺杂研究. 物理学报, 2006, 55(12): 6580-6584. doi: 10.7498/aps.55.6580
    [17] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究. 物理学报, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [18] 陈镇平, 薛运才, 苏玉玲, 宫世成, 张金仓. Gd替代YBa2Cu3O7-δ超导体的相结构与局域电子结构的研究. 物理学报, 2005, 54(11): 5382-5388. doi: 10.7498/aps.54.5382
    [19] 陈 丽, 李 华. 新型超导材料MgCNi3的电子结构与超导电性研究. 物理学报, 2004, 53(3): 922-926. doi: 10.7498/aps.53.922
    [20] 陈志谦, 郑仁蓉. 金属小粒子不同自旋态超导电性统计系综研究. 物理学报, 2002, 51(7): 1604-1607. doi: 10.7498/aps.51.1604
计量
  • 文章访问数:  715
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-03
  • 修回日期:  2023-11-25
  • 上网日期:  2023-12-04
  • 刊出日期:  2023-12-05

/

返回文章
返回