搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

型烧绿石氧化物超导体AOs2O6 (A=K, Rb) 的声子软化与超导电性

孙家法 王玮

引用本文:
Citation:

型烧绿石氧化物超导体AOs2O6 (A=K, Rb) 的声子软化与超导电性

孙家法, 王玮

Phonon softening and superconductivity of -pyrochlore oxide superconductors AOs2O6 (A=K, Rb)

Sun Jia-Fa, Wang Wei
PDF
导出引用
  • 运用基于密度泛函理论的第一性原理计算方法, 研究两种 型烧绿石氧化物超导体AOs2O6(A=K, Rb) 的结构稳定性, 声子软化以及与超导电性的关系. 通过计算发现, AOs2O6中碱金属原子A(=K, Rb) 沿〈111〉晶向具有不稳定性, 且以K原子的不稳定性更为突出. 同时, 计算得到的KOs2O6在布里渊区中心的声子频率普遍比RbOs2O6的低, 使得KOs2O6的电声子耦合常数比RbOs2O6的大. 本文计算结果表明, 较小的碱金属原子K位于较大的氧笼子中, 活动性较强, 导致声子的软化, 是引起KOs2O6具有较强的电声子耦合及较高的超导转变温度的根本原因. 这些结果对解释两种 型烧绿石氧化物超导体AOs2O6(A=K, Rb) 的超导电性具有重要意义.
    Using the first-principles calculational method based on the density functional theory, we study the structural instabilities, phonon softenings, and their relation to the superconductivities of two -pyrochlore oxide superconductors AOs2O6(A=K, Rb). It is found that there are structural instabilities of alkali ions along the 〈111〉 direction in the two -pyrochlore oxide superconductors AOs2O6(A=K, Rb), especially in KOs2O6. Meanwhile, a comparison of the phonon frequency at zone-center between KOs2O6 and RbOs2O6 shows that the frequency of KOs2O6 is lower in general than that of RbOs2O6, leading to the stronger electron-phonon coupling. We conclude that K atom located in a large oxygen cage has an unusual large atomic displacement parameter and strong activity, thereby resulting in strong phonon softening. This is the foundamental cause for stronger electron-phonon coupling and higher superconducting transition temperature of KOs2O6. These are of significance for explaining the superconductivities in -pyrochlore oxide superconductors AOs2O6(A=K, Rb).
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11104100)和 淮北师范大学青年科研项目(批准号: 700429) 资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11104100), and Youth Scientific Research Fund of Huaibei Normal University of China (Grant No. 700429).
    [1]

    Yonezawa S, Muraoka Y, Matsushita Y, Hiroi Z 2004 J. Phys: Condens Matter 16 L9-L12

    [2]

    Yonezawa S, Muraoka Y, Matsushita Y, Hiroi Z 2004 J. Phys. Soc. Jpn. 73 819

    [3]
    [4]
    [5]

    Yamaura J, Yonezawa S, Muraoka Y Hiroi Z 2006 J. Solid State Chem. 179 336

    [6]
    [7]

    Hiroi Z, Yonezawa S, Nagao Y, Yamaura J 2007 Phys. Rev. B 76 014523

    [8]
    [9]

    Brhwiler M, Kazakov S M, Karpinski J, Batlogg B 2006 Phys. Rev. B 73 094518

    [10]
    [11]

    Yoshida M, Arai K, Kaido R, Takigawa M, Yonezawa S, Muraoka Y, Hiroi Z 2007 Phys. Rev. Lett. 98 197002

    [12]
    [13]

    Hasegawa T, Takasu Y, Ogita N, Udagawa M 2007 Phys. Rev. B 77 064303

    [14]
    [15]

    Wang W, Sun J F, Liu M, Liu S 2009 Acta Phys. Sin. 58 5632 (in Chinese) [王玮, 孙家法, 刘楣, 刘甦 2009 物理学报 58 5632]

    [16]

    Xin X G, Chen X, Zhou J J, Shi S Q 2011 Acta Phys. Sin. 60 028201 (in Chinese) [忻晓桂, 陈香, 周晶晶, 施思齐 2011 物理学报 60 028201]

    [17]
    [18]
    [19]

    Blaha P, Schwarz K 2003 Comp. Mater. Sci. 28 259

    [20]

    Wu Z, Cohen R E 2006 Phys. Rev. B 73 235116

    [21]
    [22]
    [23]

    Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P, Avalibale from http: //www.pwscf.org

    [24]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [25]
    [26]
    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Kendziora C A, Sergienko I A, Jin R, He J, Keppens V, Sales B C, Mandrus D 2005 Phys. Rev. Lett. 95 125503

    [29]
    [30]

    Sergienko I A, Curnoe S H 2003 J. Phys. Soc. Jpn. 72 1607

    [31]
    [32]
    [33]

    Yamaura J, Hiroi Z 2002 J. Phys. Soc. Jpn. 71 2598

    [34]

    An J M, Pickett W E 2001 Phys. Rev. Lett. 86 4366

    [35]
    [36]
    [37]

    Huang G Q, Chen L F, Liu M, Xing D Y 2004 Phys. Rev. B 69 064509

    [38]

    Ma R, Huang G Q, Liu M 2007 Acta Phys. Sin. 56 4960 (in Chinese) [马荣, 黄桂芹, 刘楣 2007 物理学报 56 4960]

    [39]
    [40]

    Zhang J H, Ma R, Liu S, Liu M 2006 Acta Phys. Sin. 55 4816 (in Chinese) [张加宏, 马荣, 刘甦, 刘楣 2006 物理学报 55 4816]

    [41]
    [42]

    Ttnc H M, Srivastava G P 2006 J. Phys: Condens Matter 18 11089

    [43]
    [44]

    Li B, Xing Z W, Liu M 2011 Acta Phys. Sin. 60 077402 (in Chinese) [李斌, 邢钟文, 刘楣 2011 物理学报 60 077402]

    [45]
    [46]

    Wang W, Sun J F, Li S W, Lu H Y 2012 Physica C 472 29

    [47]
  • [1]

    Yonezawa S, Muraoka Y, Matsushita Y, Hiroi Z 2004 J. Phys: Condens Matter 16 L9-L12

    [2]

    Yonezawa S, Muraoka Y, Matsushita Y, Hiroi Z 2004 J. Phys. Soc. Jpn. 73 819

    [3]
    [4]
    [5]

    Yamaura J, Yonezawa S, Muraoka Y Hiroi Z 2006 J. Solid State Chem. 179 336

    [6]
    [7]

    Hiroi Z, Yonezawa S, Nagao Y, Yamaura J 2007 Phys. Rev. B 76 014523

    [8]
    [9]

    Brhwiler M, Kazakov S M, Karpinski J, Batlogg B 2006 Phys. Rev. B 73 094518

    [10]
    [11]

    Yoshida M, Arai K, Kaido R, Takigawa M, Yonezawa S, Muraoka Y, Hiroi Z 2007 Phys. Rev. Lett. 98 197002

    [12]
    [13]

    Hasegawa T, Takasu Y, Ogita N, Udagawa M 2007 Phys. Rev. B 77 064303

    [14]
    [15]

    Wang W, Sun J F, Liu M, Liu S 2009 Acta Phys. Sin. 58 5632 (in Chinese) [王玮, 孙家法, 刘楣, 刘甦 2009 物理学报 58 5632]

    [16]

    Xin X G, Chen X, Zhou J J, Shi S Q 2011 Acta Phys. Sin. 60 028201 (in Chinese) [忻晓桂, 陈香, 周晶晶, 施思齐 2011 物理学报 60 028201]

    [17]
    [18]
    [19]

    Blaha P, Schwarz K 2003 Comp. Mater. Sci. 28 259

    [20]

    Wu Z, Cohen R E 2006 Phys. Rev. B 73 235116

    [21]
    [22]
    [23]

    Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P, Avalibale from http: //www.pwscf.org

    [24]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [25]
    [26]
    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Kendziora C A, Sergienko I A, Jin R, He J, Keppens V, Sales B C, Mandrus D 2005 Phys. Rev. Lett. 95 125503

    [29]
    [30]

    Sergienko I A, Curnoe S H 2003 J. Phys. Soc. Jpn. 72 1607

    [31]
    [32]
    [33]

    Yamaura J, Hiroi Z 2002 J. Phys. Soc. Jpn. 71 2598

    [34]

    An J M, Pickett W E 2001 Phys. Rev. Lett. 86 4366

    [35]
    [36]
    [37]

    Huang G Q, Chen L F, Liu M, Xing D Y 2004 Phys. Rev. B 69 064509

    [38]

    Ma R, Huang G Q, Liu M 2007 Acta Phys. Sin. 56 4960 (in Chinese) [马荣, 黄桂芹, 刘楣 2007 物理学报 56 4960]

    [39]
    [40]

    Zhang J H, Ma R, Liu S, Liu M 2006 Acta Phys. Sin. 55 4816 (in Chinese) [张加宏, 马荣, 刘甦, 刘楣 2006 物理学报 55 4816]

    [41]
    [42]

    Ttnc H M, Srivastava G P 2006 J. Phys: Condens Matter 18 11089

    [43]
    [44]

    Li B, Xing Z W, Liu M 2011 Acta Phys. Sin. 60 077402 (in Chinese) [李斌, 邢钟文, 刘楣 2011 物理学报 60 077402]

    [45]
    [46]

    Wang W, Sun J F, Li S W, Lu H Y 2012 Physica C 472 29

    [47]
  • [1] 金士锋, 郭建刚, 王刚, 陈小龙. 新型FeSe基超导材料研究进展. 物理学报, 2018, 67(20): 207412. doi: 10.7498/aps.67.20181701
    [2] 衣玮, 吴奇, 孙力玲. 压力下铁砷基化合物的超导电性研究. 物理学报, 2017, 66(3): 037402. doi: 10.7498/aps.66.037402
    [3] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田. 高压下富氢化合物的结构与奇异超导电性. 物理学报, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
    [4] 高淼, 孔鑫, 卢仲毅, 向涛. Li2C2中电声耦合及超导电性的第一性原理计算研究. 物理学报, 2015, 64(21): 214701. doi: 10.7498/aps.64.214701
    [5] 王玮, 尹新国. 铁基氟化物超导体SrFe1-xCoxAsF(x=0, 0.125)声子特性的第一性原理计算研究. 物理学报, 2014, 63(9): 097401. doi: 10.7498/aps.63.097401
    [6] 李斌, 邢钟文, 刘楣. LiFeAs超导体中磁性与声子软化. 物理学报, 2011, 60(7): 077402. doi: 10.7498/aps.60.077402
    [7] 高鹏举, 章文贡, 陈淑卿, 周秀华, 肖丽足. YBCO/聚丙烯腈杂化膜及其超导性研究. 物理学报, 2010, 59(1): 583-586. doi: 10.7498/aps.59.583
    [8] 王玮, 孙家法, 刘楣, 刘甦. β型烧绿石结构氧化物超导体AOs2O6(A=K,Rb,Cs)电子能带结构的第一性原理计算. 物理学报, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [9] 祖 敏, 张鹰子, 闻海虎. 薄膜厚度对La1.85Sr0.15CuO4薄膜结构和超导电性的影响. 物理学报, 2008, 57(11): 7257-7261. doi: 10.7498/aps.57.7257
    [10] 舒华兵, 刘 甦, 马 荣, 刘 楣. 第一性原理计算MgB2薄膜拉伸对超导电性的影响. 物理学报, 2007, 56(12): 7262-7265. doi: 10.7498/aps.56.7262
    [11] 马 荣, 黄桂芹, 刘 楣. 三元硅化物CaAlSi的结构和超导电性. 物理学报, 2007, 56(8): 4960-4964. doi: 10.7498/aps.56.4960
    [12] 梁芳营, 李汉明, 李英骏. 超导环电流的研究. 物理学报, 2006, 55(2): 830-833. doi: 10.7498/aps.55.830
    [13] 马 荣, 张加宏, 杜锦丽, 刘 甦, 刘 楣. 新超导体MgCNi3的虚晶掺杂研究. 物理学报, 2006, 55(12): 6580-6584. doi: 10.7498/aps.55.6580
    [14] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究. 物理学报, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [15] 陈镇平, 薛运才, 苏玉玲, 宫世成, 张金仓. Gd替代YBa2Cu3O7-δ超导体的相结构与局域电子结构的研究. 物理学报, 2005, 54(11): 5382-5388. doi: 10.7498/aps.54.5382
    [16] 陈丽, 李华, 董建敏, 潘凤春, 梅良模. 原子簇La8-xBaxCuO6的原子磁矩和自旋极化的电子结构研究. 物理学报, 2004, 53(1): 254-259. doi: 10.7498/aps.53.254
    [17] 陈 丽, 李 华. 新型超导材料MgCNi3的电子结构与超导电性研究. 物理学报, 2004, 53(3): 922-926. doi: 10.7498/aps.53.922
    [18] 梁芳营, 青 心, 钟玉荣, 丁双红. 载荷波动在超导特性中的研究. 物理学报, 2003, 52(10): 2584-2588. doi: 10.7498/aps.52.2584
    [19] 陈志谦, 陈洪, 程南璞, 郑瑞伦. 纳米量级超导Al粒子在磁场中的Zeeman分裂. 物理学报, 2002, 51(3): 649-654. doi: 10.7498/aps.51.649
    [20] 陈志谦, 郑仁蓉. 金属小粒子不同自旋态超导电性统计系综研究. 物理学报, 2002, 51(7): 1604-1607. doi: 10.7498/aps.51.1604
计量
  • 文章访问数:  4224
  • PDF下载量:  483
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-28
  • 修回日期:  2011-11-28
  • 刊出日期:  2012-07-05

型烧绿石氧化物超导体AOs2O6 (A=K, Rb) 的声子软化与超导电性

  • 1. 淮北师范大学信息学院, 淮北 235000;
  • 2. 淮北师范大学物理与电子信息学院, 淮北 235000
    基金项目: 国家自然科学基金青年科学基金(批准号: 11104100)和 淮北师范大学青年科研项目(批准号: 700429) 资助的课题.

摘要: 运用基于密度泛函理论的第一性原理计算方法, 研究两种 型烧绿石氧化物超导体AOs2O6(A=K, Rb) 的结构稳定性, 声子软化以及与超导电性的关系. 通过计算发现, AOs2O6中碱金属原子A(=K, Rb) 沿〈111〉晶向具有不稳定性, 且以K原子的不稳定性更为突出. 同时, 计算得到的KOs2O6在布里渊区中心的声子频率普遍比RbOs2O6的低, 使得KOs2O6的电声子耦合常数比RbOs2O6的大. 本文计算结果表明, 较小的碱金属原子K位于较大的氧笼子中, 活动性较强, 导致声子的软化, 是引起KOs2O6具有较强的电声子耦合及较高的超导转变温度的根本原因. 这些结果对解释两种 型烧绿石氧化物超导体AOs2O6(A=K, Rb) 的超导电性具有重要意义.

English Abstract

参考文献 (47)

目录

    /

    返回文章
    返回