搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LiFeAs超导体中磁性与声子软化

李斌 邢钟文 刘楣

引用本文:
Citation:

LiFeAs超导体中磁性与声子软化

李斌, 邢钟文, 刘楣

Magnetism and phonon softening of LiFeAs superconductors

Xing Zhong-Wen, Liu Mei, Li Bin
PDF
导出引用
  • 运用第一性原理密度泛函理论研究了铁基超导体LiFeAs的电子结构和声子谱.计算得到的LiFeAs基态具有涨落的条型反铁磁构型.通过比较LiFeAs在非磁态与条形反铁磁态下的声子态密度,发现,LiFeAs中各向异性自旋互作用的竞争产生了不稳定的自旋密度波和部分晶格位置弛豫,导致Fe和As原子振动模式的软化,从而提高电声子耦合强度.因此,自旋-声子互作用对非常规超导电性有重要贡献.
    Using the first principles calculations based on density functional theory, we study the electronic band structure, the phonon dispersion, and the phonon density of states of the iron-based superconductor LiFeAs. The obtained ground state of LiFeAs is of the fluctuated antiferromagnetic order and partial structural relaxation. A comparson of phonon densities of states between in the striped antiferromagnetic ordering and in the nonmagnetic state indicates that the anisotropic spin interactions result in phonon softening of Fe and As atomic vibrations, thereby enhancing the electron-phonon coupling. As a result, the spin-phonon interaction plas an important role in the unconventional superconductivity.
    • 基金项目: 国家自然科学基金(批准号:11074109, 110704033, 110704032), 江苏省自然科学基金 (批准号:SBK200920627) 和中国基础研究重点项目 (批准号:2010CB923404.)资助的课题.
    [1]

    Boeri L, Dolgov O V, Golubov A A 2008 Phys. Rev. Lett. 101 026403

    [2]

    Subedi A, Zhang L, Singh D J, Du M H 2008 Phys. Rev. B 78 134514

    [3]

    Yildirim T 2009 Phys. Rev. Lett. 102 037003

    [4]

    Huang G Q, Xing Z W, Xing D Y 2010 Phys. Rev. B 82 014511

    [5]

    Tacon M Le, Forrest T R, Rüegg Ch, Bosak A, Walters A C, Mittal R, Rnnow H M, Zhigadlo N D, Katrych S, Karpinski J, Hill J P, Krisch M, McMorrow D F 2009 Phys. Rev. B 80 220504R

    [6]

    Liu R H, Wu T, Wu G, Chen H, Wang X F, Xie Y L, Yin J J, Yan Y J, Li Q J, Shi B C, Chu W S, Wu Z Y, Chen X H 2009 Nature 459 64

    [7]

    McGuire M A, Christianson A D, Sefat A S, Sales B C, Lumsden M D, Jin R , Payzant E A, Mandrus D, Luan Y, Keppens V, Varadarajan V, Brill J W, Hermann R P, Sougrati M T, Grandjean F, Long G J 2008 Phys. Rev. B 78 094517

    [8]

    Egami T, Fine B V, Parshall D, Subedi A, Singh D J 2010 Advances in condensed Matter Physics 2010 164916

    [9]

    Noffsinger J, Giustino F, Louie SG, Cohen ML 2009 Phys. Rev. Lett. 102 147003

    [10]

    Zbiri M, Schober H, Johnson M R, Rols S, Mittal R, Su Y X, Rotter M, Johrendt D 2009 Phys. Rev. B 79 064511

    [11]

    Mittal R, Zbiri M, Rols S, Su Y, Xiao Y, Schober H, Chaplot S L, Johnson M, Chatterji T, Matsuishi S, Hosono H, Brueckel T 2009 Phys. Rev. B 79 214514

    [12]

    Li Z C, Lu W, Dong X L, Zhou F, Zhao Z X 2010 Chin. Phys. B 19 026103

    [13]

    Deng Z, Wang X C, Liu Q Q, Zhang S J, Lv Y X, Zhu J L, Yu R C, Jin C Q 2009 Europhys. Lett. 87 37004

    [14]

    Tapp J H, Tang Z J, Lv B, Sasmal K, Lorenz B, Chu P C W, Guloy A M 2008 Phys. Rev. B 78 060505

    [15]

    Chu C W, Chen F, Gooch M, Guloy A M, Lorenz B, Lv B, Sasmal K, Tang Z J, Tapp J H, Xue Y Y 2009 Physica C 469 326

    [16]

    Gooch M, Lv B, Tapp J H, Tang Z, Lorenz B, Guloy A M, Chu P C W 2009 Europhys. Lett. 85 27005

    [17]

    Pratt F L, Pratt F L, Baker P J, Blundell S J, Lancaster T, Lewtas H J, Adamson P, Pitcher M J, Parker D R, Clarke S J 2009 Phys. Rev. B 79 052508

    [18]

    Borisenko S V, Zabolotnyy V B, Evtushinsky D V, Kim T K, Morozov I V, Yaresko A N, Kordyuk A A, Behr G, Vasiliev A, Follath R, Büchner B 2010 Phys. Rev. Lett. 105 067002

    [19]

    Zhang S J, Wang X C, Sammynaiken R, Tse J S, Yang L X, Li Z, Liu Q Q, Desgreniers S, Yao Y, Liu H Z, Jin C Q 2009 Phys. Rev. B 80 014506

    [20]

    Chen G F, Hu W Z, Luo J L, Wang N L 2009 Phys. Rev. Lett.102 227004

    [21]

    Singh D J 2008 Phys. Rev. B 78 094511

    [22]

    Liu S, Li B, Wang W, Wang J, Liu M 2010 Acta Phys. Sin. 59 4245 (in Chinese) [刘 甦、李 斌、王 玮、汪 军、刘 楣 2010 物理学报 59 4245 ]

    [23]

    Ma F J, Lu Z Y, Xiang T 2008 Phys. Rev. B 78 224517

    [24]

    Wang W, Li B, Liu S, Liu M, Xing Z W 2010 J. of Appl. Phys. 107 123906

    [25]

    Singh D J, Du M H 2008 Phys. Rev. Lett. 100 237003

    [26]

    Wu Z, Cohen R E 2006 Phys. Rev. B 73 235116

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Li Z, Tse J S, Jin C Q 2009 Phys. Rev. B 80 092503

    [29]

    Jishi R A, Alyahyaei H M 2010 Advances in Condensed Matter Physics 2010 804343

  • [1]

    Boeri L, Dolgov O V, Golubov A A 2008 Phys. Rev. Lett. 101 026403

    [2]

    Subedi A, Zhang L, Singh D J, Du M H 2008 Phys. Rev. B 78 134514

    [3]

    Yildirim T 2009 Phys. Rev. Lett. 102 037003

    [4]

    Huang G Q, Xing Z W, Xing D Y 2010 Phys. Rev. B 82 014511

    [5]

    Tacon M Le, Forrest T R, Rüegg Ch, Bosak A, Walters A C, Mittal R, Rnnow H M, Zhigadlo N D, Katrych S, Karpinski J, Hill J P, Krisch M, McMorrow D F 2009 Phys. Rev. B 80 220504R

    [6]

    Liu R H, Wu T, Wu G, Chen H, Wang X F, Xie Y L, Yin J J, Yan Y J, Li Q J, Shi B C, Chu W S, Wu Z Y, Chen X H 2009 Nature 459 64

    [7]

    McGuire M A, Christianson A D, Sefat A S, Sales B C, Lumsden M D, Jin R , Payzant E A, Mandrus D, Luan Y, Keppens V, Varadarajan V, Brill J W, Hermann R P, Sougrati M T, Grandjean F, Long G J 2008 Phys. Rev. B 78 094517

    [8]

    Egami T, Fine B V, Parshall D, Subedi A, Singh D J 2010 Advances in condensed Matter Physics 2010 164916

    [9]

    Noffsinger J, Giustino F, Louie SG, Cohen ML 2009 Phys. Rev. Lett. 102 147003

    [10]

    Zbiri M, Schober H, Johnson M R, Rols S, Mittal R, Su Y X, Rotter M, Johrendt D 2009 Phys. Rev. B 79 064511

    [11]

    Mittal R, Zbiri M, Rols S, Su Y, Xiao Y, Schober H, Chaplot S L, Johnson M, Chatterji T, Matsuishi S, Hosono H, Brueckel T 2009 Phys. Rev. B 79 214514

    [12]

    Li Z C, Lu W, Dong X L, Zhou F, Zhao Z X 2010 Chin. Phys. B 19 026103

    [13]

    Deng Z, Wang X C, Liu Q Q, Zhang S J, Lv Y X, Zhu J L, Yu R C, Jin C Q 2009 Europhys. Lett. 87 37004

    [14]

    Tapp J H, Tang Z J, Lv B, Sasmal K, Lorenz B, Chu P C W, Guloy A M 2008 Phys. Rev. B 78 060505

    [15]

    Chu C W, Chen F, Gooch M, Guloy A M, Lorenz B, Lv B, Sasmal K, Tang Z J, Tapp J H, Xue Y Y 2009 Physica C 469 326

    [16]

    Gooch M, Lv B, Tapp J H, Tang Z, Lorenz B, Guloy A M, Chu P C W 2009 Europhys. Lett. 85 27005

    [17]

    Pratt F L, Pratt F L, Baker P J, Blundell S J, Lancaster T, Lewtas H J, Adamson P, Pitcher M J, Parker D R, Clarke S J 2009 Phys. Rev. B 79 052508

    [18]

    Borisenko S V, Zabolotnyy V B, Evtushinsky D V, Kim T K, Morozov I V, Yaresko A N, Kordyuk A A, Behr G, Vasiliev A, Follath R, Büchner B 2010 Phys. Rev. Lett. 105 067002

    [19]

    Zhang S J, Wang X C, Sammynaiken R, Tse J S, Yang L X, Li Z, Liu Q Q, Desgreniers S, Yao Y, Liu H Z, Jin C Q 2009 Phys. Rev. B 80 014506

    [20]

    Chen G F, Hu W Z, Luo J L, Wang N L 2009 Phys. Rev. Lett.102 227004

    [21]

    Singh D J 2008 Phys. Rev. B 78 094511

    [22]

    Liu S, Li B, Wang W, Wang J, Liu M 2010 Acta Phys. Sin. 59 4245 (in Chinese) [刘 甦、李 斌、王 玮、汪 军、刘 楣 2010 物理学报 59 4245 ]

    [23]

    Ma F J, Lu Z Y, Xiang T 2008 Phys. Rev. B 78 224517

    [24]

    Wang W, Li B, Liu S, Liu M, Xing Z W 2010 J. of Appl. Phys. 107 123906

    [25]

    Singh D J, Du M H 2008 Phys. Rev. Lett. 100 237003

    [26]

    Wu Z, Cohen R E 2006 Phys. Rev. B 73 235116

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Li Z, Tse J S, Jin C Q 2009 Phys. Rev. B 80 092503

    [29]

    Jishi R A, Alyahyaei H M 2010 Advances in Condensed Matter Physics 2010 804343

  • [1] 闻海虎. 高温超导体磁通钉扎和磁通动力学研究简介. 物理学报, 2021, 70(1): 017405. doi: 10.7498/aps.70.20201881
    [2] 李妙聪, 陶前, 许祝安. 铁基超导体的输运性质. 物理学报, 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [3] 李世亮, 刘曌玉, 谷延红. 利用单轴压强下的电阻变化研究铁基超导体中的向列涨落. 物理学报, 2018, 67(12): 127401. doi: 10.7498/aps.67.20180627
    [4] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究. 物理学报, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [5] 王志成, 曹光旱. 新型交生结构自掺杂铁基超导体. 物理学报, 2018, 67(20): 207406. doi: 10.7498/aps.67.20181355
    [6] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [7] 金士锋, 郭建刚, 王刚, 陈小龙. 新型FeSe基超导材料研究进展. 物理学报, 2018, 67(20): 207412. doi: 10.7498/aps.67.20181701
    [8] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理. 物理学报, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [9] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学. 物理学报, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [10] 衣玮, 吴奇, 孙力玲. 压力下铁砷基化合物的超导电性研究. 物理学报, 2017, 66(3): 037402. doi: 10.7498/aps.66.037402
    [11] 赵敬龙, 董正超, 仲崇贵, 李诚迪. 量子线/铁基超导隧道结中隧道谱的研究. 物理学报, 2015, 64(5): 057401. doi: 10.7498/aps.64.057401
    [12] 杜增义, 方德龙, 王震宇, 杜冠, 杨雄, 杨欢, 顾根大, 闻海虎. 铁基超导体FeSe0.5Te0.5表面隧道谱的研究. 物理学报, 2015, 64(9): 097401. doi: 10.7498/aps.64.097401
    [13] 高淼, 孔鑫, 卢仲毅, 向涛. Li2C2中电声耦合及超导电性的第一性原理计算研究. 物理学报, 2015, 64(21): 214701. doi: 10.7498/aps.64.214701
    [14] 俞榕. 铁基超导体多轨道模型中的电子关联与轨道选择. 物理学报, 2015, 64(21): 217102. doi: 10.7498/aps.64.217102
    [15] 李世超, 甘远, 王靖珲, 冉柯静, 温锦生. 铁基超导体Fe1+yTe1-xSex中磁性的中子散射研究. 物理学报, 2015, 64(9): 097503. doi: 10.7498/aps.64.097503
    [16] 李政, 周睿, 郑国庆. 铁基超导体的量子临界行为. 物理学报, 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [17] 王玮, 尹新国. 铁基氟化物超导体SrFe1-xCoxAsF(x=0, 0.125)声子特性的第一性原理计算研究. 物理学报, 2014, 63(9): 097401. doi: 10.7498/aps.63.097401
    [18] 孙家法, 王玮. 型烧绿石氧化物超导体AOs2O6 (A=K, Rb) 的声子软化与超导电性. 物理学报, 2012, 61(13): 137402. doi: 10.7498/aps.61.137402
    [19] 刘甦, 李斌, 王玮, 汪军, 刘楣. 铁基化合物 SrFeAsF以及 Co掺杂超导体SrFe0.875Co0.125AsF的电子结构和磁性. 物理学报, 2010, 59(6): 4245-4252. doi: 10.7498/aps.59.4245
    [20] 舒华兵, 刘 甦, 马 荣, 刘 楣. 第一性原理计算MgB2薄膜拉伸对超导电性的影响. 物理学报, 2007, 56(12): 7262-7265. doi: 10.7498/aps.56.7262
计量
  • 文章访问数:  9524
  • PDF下载量:  1348
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-28
  • 修回日期:  2010-11-05
  • 刊出日期:  2011-07-15

LiFeAs超导体中磁性与声子软化

  • 1. (1)东南大学物理系,南京 211189; (2)南京大学材料科学与工程系, 南京 210093
    基金项目: 国家自然科学基金(批准号:11074109, 110704033, 110704032), 江苏省自然科学基金 (批准号:SBK200920627) 和中国基础研究重点项目 (批准号:2010CB923404.)资助的课题.

摘要: 运用第一性原理密度泛函理论研究了铁基超导体LiFeAs的电子结构和声子谱.计算得到的LiFeAs基态具有涨落的条型反铁磁构型.通过比较LiFeAs在非磁态与条形反铁磁态下的声子态密度,发现,LiFeAs中各向异性自旋互作用的竞争产生了不稳定的自旋密度波和部分晶格位置弛豫,导致Fe和As原子振动模式的软化,从而提高电声子耦合强度.因此,自旋-声子互作用对非常规超导电性有重要贡献.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回