搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Li2C2中电声耦合及超导电性的第一性原理计算研究

高淼 孔鑫 卢仲毅 向涛

引用本文:
Citation:

Li2C2中电声耦合及超导电性的第一性原理计算研究

高淼, 孔鑫, 卢仲毅, 向涛

First-principles study of electron-phonon coupling and superconductivity in compound Li2C2

Gao Miao, Kong Xin, Lu Zhong-Yi, Xiang Tao
PDF
导出引用
  • 通过第一性原理密度泛函和超导Eliashberg理论计算, 我们研究了Li2C2在Cmcm相的电子结构和电声耦合特性, 预言这种材料在常压和5GPa下是由电声耦合导致的转变温度分别为13.2 K 和9.8 K的超导体, 为实验上探索包含一维碳原子链的材料中是否可能存在超导电性、发现新的超导体提供了理论依据. 如果理论所预言的Li2C2超导电性得到实验的证实, 这将是锂碳化物中转变温度最高的超导体, 高于实验观测到的LiC2的1.9 K和理论预言的单层LiC6的8.1 K超导转变温度.
    One-dimensional carbon chains are expected to show outstanding optical and mechanical properties. But synthesis of the compounds containing one-dimensional carbon chains is a challenging work, because of the difficulty in saturating the dangling bonds of carbon atoms. Recently, the transition from the Immm phase to the Cmcm one at a transition pressure 5 GPa has been predicted for Li2C2 by density-functional theory calculations. In Cmcm-Li2C2, there are one-dimensional zigzag carbon chains caged by lithium atoms. Under ambient pressure, the electronic structure of Cmcm-Li2C2 is as follows: The hybridization among 2s, 2py, and 2pz orbitals of carbon atoms results in three sp2-hybridized orbitals that are coplanar with the zigzag chains of these carbon atoms, denoted as the y-z plane. The sp2-hybridized orbitals along y-axis (perpendicular to the zigzag chain) overlap with each other and form one πup-bonding band and one πup ^*-antibonding band. Likewise, the 2p_x orbitals of carbon atoms will provide also one πup-bonding band and one π*-antibonding band. These two π*-antibonding bands cross the Fermi level and contribute to the metallicity of Cmcm-Li2C2. The other two sp2-hybridized orbitals will give two σ-bonding bands, whose band tops are about 5 eV below the Fermi energy level. These two fully occupied σ bands are the framework of the zigzag carbon chains. The changes in electronic structure of Cmcm-Li2C2 under 5 GPa are negligible, compared with that in case of ambient pressure. To our best knowledge, there is no report upon the superconductivity for compounds containing one dimensional carbon chains. We choose Cmcm-Li2C2 as a model system to investigate its electron-phonon coupling and phonon-mediated superconductivity. To determine the phonon-mediated superconductivity, the electron-phonon coupling constant λ and logarithmic average frequency ωlog are calculated based on density functional perturbation theory and Eliashberg equations. We find that λ and ωlog are equal to 0.63 and 53.8 meV respectively at ambient pressure for Cmcm-Li2C2. In comparison, both the phonon density of states and the Eliashberg spectral function α2F(ω) are slightly blue-shifted at a pressure of 5 GPa. Correspondingly, λ and ωlog are calculated to be 0.56 and 58.2 meV at 5 GPa. Utilizing McMillian-Allen-Dynes formula, we find that the superconducting transition temperatures (Tc) for Cmcm-Li2C2 are 13.2 K and 9.8 K, respectively, at ambient pressure and 5 GPa. We also find that two phonon modes B1g and Ag at Γ point have strong coupling with π* electrons. Among lithium carbide compounds, the superconductivity is only observed in LiC2 below 1.9 K. Besides LiC2, theoretical calculations also predicted superconductivity in mono-layer LiC6, with Tc being 8.1 K. So if the superconductivity of Cmcm-Li2C2 is confirmed by experiment, it will be the first superconducting compound containing one dimensional carbon chains and its Tc will be the highest one among lithium carbide compounds. Thus experimental research to explore the possible superconductivity in Cmcm-Li2C2 is called for.
      通信作者: 高淼, miaogao@iphy.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CBA00112)、国家自然科学基金(批准号: 11190024, 11404383)和中国博士后科学基金资助项目(批准号: 2014M561084).
      Corresponding author: Gao Miao, miaogao@iphy.ac.cn
    • Funds: Project supported by the National Program for Basic Research of MOST of China (Grant No. 2011CBA00112), the National Natural Science Foundation of China (Grant Nos. 11190024, 11404383), and the China Postdoctoral Science Foundation (Grant No. 2014M561084).
    [1]

    Allen P B, Dynes R C 1975 Phys. Rev. B 12 905

    [2]

    McMahon J M, Ceperley D M 2011 Phys. Rev. Lett. 106 165302

    [3]

    McMahon J M, Ceperley D M 2011 Phys. Rev. B 84 144515

    [4]

    Drozdov A P, Eremets M I, Troyan I A 2014 arXiv:1412.0460

    [5]

    Duan D et al. 2014 Sci. Reports 4 6968

    [6]

    Gao M, Lu Z Y, Xiang T 2015 Phys. Rev. B 91 045132

    [7]

    Ekimov E A et al. 2004 Nature 428 542

    [8]

    Takano Y et al. 2007 Diamond Relat. Mater. 16 911

    [9]

    Moussa J E, Cohen M L 2008 Phys. Rev. B 77 064518

    [10]

    Solozhenko V L, Kurakevych O O, Andrault D, Godec Y Le, Mezouar M 2009 Phys. Rev. Lett. 102 015506

    [11]

    Hannay N B, Geballe T H, Matthias B T, Andres K, Schmidt P, MacNair D 1965 Phys. Rev. Lett. 14 225

    [12]

    Weller T E, Ellerby M, Saxena S S, Smith R P, Skipper N T 2005 Nature Phys. 1 39

    [13]

    Emery N et al. 2005 Phys. Rev. Lett. 95 087003

    [14]

    Profeta G, Calandra M, Mauri F 2012 Nature Phys. 8 131

    [15]

    Pan Z H, Camacho J, Upton M H, Fedorov A V, Howard C A, Ellerby M, Valla T 2011 Phys. Rev. Lett. 106 187002

    [16]

    Hebard A F et al. 1991 Nature 350 600

    [17]

    Varma C M, Zaanen J, Raghavachari K 1991 Science 254 989

    [18]

    Juza R, Wehle V, Schuster H U 1967 Z. Anorg. Allg. Chem. 352 252

    [19]

    Ruschewitz U, Pöttgen R 1999 Z. Anorg. Allg. Chem. 625 1599

    [20]

    Chen X Q, Fu C L, Franchini C 2010 J. Phys.: Condens. Matter 22 292201

    [21]

    Belash I T, Bronnikov A D, Zharikov O V, Pal'nichenko A V 1989 Solid State Commun. 69 921

    [22]

    Giannozzi P et al. 2009 J. Phys.: Condens. Matter 21 395502

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Rappe A M, Rabe K M, Kaxiras E, Joannopoulos J D 1990 Phys. Rev. B 41 1227

    [25]

    Baroni S, de Gironcoli S, Corso A Dal, Giannozzi P 2001 Rev. Mod. Phys. 73 515

    [26]

    Eliashberg G M 1960 Zh. Eksp. Teor. Fiz. 38 966

    [27]

    Allen P B 1972 Phys. Rev. B 6 2577

    [28]

    Richardson C F, Ashcroft N W 1997 Phys. Rev. Lett. 78 118

    [29]

    Lee K H, Chang K J, Cohen M L 1995 Phys. Rev. B 52 1425

    [30]

    Wierzbowska M, Gironcoli S de, Giannozzi P 2005 arXiv:cond-mat 0504077

    [31]

    An J M, Pickett W E 2001 Phys. Rev. Lett. 86 4366

  • [1]

    Allen P B, Dynes R C 1975 Phys. Rev. B 12 905

    [2]

    McMahon J M, Ceperley D M 2011 Phys. Rev. Lett. 106 165302

    [3]

    McMahon J M, Ceperley D M 2011 Phys. Rev. B 84 144515

    [4]

    Drozdov A P, Eremets M I, Troyan I A 2014 arXiv:1412.0460

    [5]

    Duan D et al. 2014 Sci. Reports 4 6968

    [6]

    Gao M, Lu Z Y, Xiang T 2015 Phys. Rev. B 91 045132

    [7]

    Ekimov E A et al. 2004 Nature 428 542

    [8]

    Takano Y et al. 2007 Diamond Relat. Mater. 16 911

    [9]

    Moussa J E, Cohen M L 2008 Phys. Rev. B 77 064518

    [10]

    Solozhenko V L, Kurakevych O O, Andrault D, Godec Y Le, Mezouar M 2009 Phys. Rev. Lett. 102 015506

    [11]

    Hannay N B, Geballe T H, Matthias B T, Andres K, Schmidt P, MacNair D 1965 Phys. Rev. Lett. 14 225

    [12]

    Weller T E, Ellerby M, Saxena S S, Smith R P, Skipper N T 2005 Nature Phys. 1 39

    [13]

    Emery N et al. 2005 Phys. Rev. Lett. 95 087003

    [14]

    Profeta G, Calandra M, Mauri F 2012 Nature Phys. 8 131

    [15]

    Pan Z H, Camacho J, Upton M H, Fedorov A V, Howard C A, Ellerby M, Valla T 2011 Phys. Rev. Lett. 106 187002

    [16]

    Hebard A F et al. 1991 Nature 350 600

    [17]

    Varma C M, Zaanen J, Raghavachari K 1991 Science 254 989

    [18]

    Juza R, Wehle V, Schuster H U 1967 Z. Anorg. Allg. Chem. 352 252

    [19]

    Ruschewitz U, Pöttgen R 1999 Z. Anorg. Allg. Chem. 625 1599

    [20]

    Chen X Q, Fu C L, Franchini C 2010 J. Phys.: Condens. Matter 22 292201

    [21]

    Belash I T, Bronnikov A D, Zharikov O V, Pal'nichenko A V 1989 Solid State Commun. 69 921

    [22]

    Giannozzi P et al. 2009 J. Phys.: Condens. Matter 21 395502

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Rappe A M, Rabe K M, Kaxiras E, Joannopoulos J D 1990 Phys. Rev. B 41 1227

    [25]

    Baroni S, de Gironcoli S, Corso A Dal, Giannozzi P 2001 Rev. Mod. Phys. 73 515

    [26]

    Eliashberg G M 1960 Zh. Eksp. Teor. Fiz. 38 966

    [27]

    Allen P B 1972 Phys. Rev. B 6 2577

    [28]

    Richardson C F, Ashcroft N W 1997 Phys. Rev. Lett. 78 118

    [29]

    Lee K H, Chang K J, Cohen M L 1995 Phys. Rev. B 52 1425

    [30]

    Wierzbowska M, Gironcoli S de, Giannozzi P 2005 arXiv:cond-mat 0504077

    [31]

    An J M, Pickett W E 2001 Phys. Rev. Lett. 86 4366

  • [1] 吕程烨, 陈英炜, 谢牧廷, 李雪阳, 于宏宇, 钟阳, 向红军. 外加电磁场下周期性体系的第一性原理计算方法. 物理学报, 2023, 72(23): 237102. doi: 10.7498/aps.72.20231313
    [2] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算. 物理学报, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [3] 钟国华, 林海青. 芳香超导体: 电-声耦合与电子关联. 物理学报, 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [4] 王奇, 唐法威, 侯超, 吕皓, 宋晓艳. W-In体系溶质晶界偏聚行为的第一性原理计算. 物理学报, 2019, 68(7): 077101. doi: 10.7498/aps.68.20190056
    [5] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [6] 衣玮, 吴奇, 孙力玲. 压力下铁砷基化合物的超导电性研究. 物理学报, 2017, 66(3): 037402. doi: 10.7498/aps.66.037402
    [7] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田. 高压下富氢化合物的结构与奇异超导电性. 物理学报, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
    [8] 王玮, 尹新国. 铁基氟化物超导体SrFe1-xCoxAsF(x=0, 0.125)声子特性的第一性原理计算研究. 物理学报, 2014, 63(9): 097401. doi: 10.7498/aps.63.097401
    [9] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [10] 孙家法, 王玮. 型烧绿石氧化物超导体AOs2O6 (A=K, Rb) 的声子软化与超导电性. 物理学报, 2012, 61(13): 137402. doi: 10.7498/aps.61.137402
    [11] 高鹏举, 章文贡, 陈淑卿, 周秀华, 肖丽足. YBCO/聚丙烯腈杂化膜及其超导性研究. 物理学报, 2010, 59(1): 583-586. doi: 10.7498/aps.59.583
    [12] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [13] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [14] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算. 物理学报, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [15] 祖 敏, 张鹰子, 闻海虎. 薄膜厚度对La1.85Sr0.15CuO4薄膜结构和超导电性的影响. 物理学报, 2008, 57(11): 7257-7261. doi: 10.7498/aps.57.7257
    [16] 马 荣, 黄桂芹, 刘 楣. 三元硅化物CaAlSi的结构和超导电性. 物理学报, 2007, 56(8): 4960-4964. doi: 10.7498/aps.56.4960
    [17] 舒华兵, 刘 甦, 马 荣, 刘 楣. 第一性原理计算MgB2薄膜拉伸对超导电性的影响. 物理学报, 2007, 56(12): 7262-7265. doi: 10.7498/aps.56.7262
    [18] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究. 物理学报, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [19] 陈 丽, 李 华. 新型超导材料MgCNi3的电子结构与超导电性研究. 物理学报, 2004, 53(3): 922-926. doi: 10.7498/aps.53.922
    [20] 陈志谦, 郑仁蓉. 金属小粒子不同自旋态超导电性统计系综研究. 物理学报, 2002, 51(7): 1604-1607. doi: 10.7498/aps.51.1604
计量
  • 文章访问数:  8961
  • PDF下载量:  833
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-15
  • 修回日期:  2015-08-19
  • 刊出日期:  2015-11-05

/

返回文章
返回