搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转角铜氧化物中的约瑟夫森效应

张定 朱玉莹 汪恒 薛其坤

引用本文:
Citation:

转角铜氧化物中的约瑟夫森效应

张定, 朱玉莹, 汪恒, 薛其坤

Josephson effect in twisted cuprates

Zhang Ding, Zhu Yu-Ying, Wang Heng, Xue Qi-Kun
PDF
HTML
导出引用
  • 当前常压下超导转变温度最高的材料仍然来自铜氧化物家族. 然而, 铜氧化物超导的微观机理仍未被完全建立起来, 成为了凝聚态物理领域最具挑战性的问题之一. 测定配对波函数的相位部分是全面理解高温超导机理不可或缺的一环. 该实验往往需要将不同晶向的铜氧化物拼接成高质量的约瑟夫森结, 十分考验样品的合成制备技术. 近年来, 利用二维材料中发展起来的范德瓦耳斯堆垛技术, 研究者们构建了具有原子级平整界面的转角铜氧化物双晶结, 研究了不同掺杂浓度、不同转角下的约瑟夫森隧穿, 探索了其中出现s波、d波、以及由于界面耦合演生出的d + id波配对的可能性. 本文将回顾转角铜氧化物约瑟夫森结的研究进展, 介绍近年来发展起来的转角结制备技术, 讨论当前实验测量的结果及其意义, 提出尚待解决的关键性问题.
    To tunnel, or not to tunnel, that is the question for a Josephson junction constructed by superconductors with unidentified pairing symmetry. Theoretically, Josephson tunneling is forbidden between two d-wave superconductors twisted by 45°. This is in sharp contrast to persistent tunneling between two s-wave superconductors. Experimentally, however, Josephson tunneling is observed in twisted bicrystalline cuprates at around 45°, against the expectation that cuprate superconductors possess d-wave pairing. Due to technical uncertainties, the early studies on twisted bulk cuprates were not widely recognized. The recent advent of van der Waals stacking has allowed a fresh look at this problem. Indeed, twisted thin flakes of cuprates have been realized and the corresponding pairing symmetry has been revisited both experimentally and theoretically. In this work, we overview the recent development on twisted cuprates. After summarizing the theoretical treatment and recent proposals, we introduce the technical progress of making the twisted cuprate junctions in van der Waal stacking, and discuss the recent experimental results of s-, d-, or d + id-wave pairing. In the end, we propose possible directions for future exploration in this field. This paper has three major sections: theories on twisted cuprates in Section 1, techniques of realizing twisted cuprates in Section 2, and experimental results on twisted cuprates in Section 3. Specifically, in Section 1, both the early theory and the latest theoretical proposals are introduced. After discussing the calculated angular dependence of Josephson tunneling between two d-wave or s-wave superconductors, we summarize the predicted features from the emergent d+id-wave pairing. They include unconventional temperature dependence of the critical Josephson current, doubling in frequency of the Fraunhofer pattern or Shapiro steps, and spontaneous Kerr rotation or emergence of Josephson diode effect. In Section 2, the technological progress of van der Waals stacking of cuprate superconductors is presented. Ultrathin twisted Josephson junctions of cuprates can be realized by either dry stacking together with oxygen post-annealing or cryogenic stacking at tens of degrees below 0 °C. In Section 3, the recent experimental results on van der Waals stacked twisted cuprates are reviewed. Tunneling in twisted underdoped cuprates realized by post-annealing indicates the existence of s-wave pairing and strong deviation from pure d-wave pairing. This result is contrasted with another study on cryogenically stacked junctions. There, signatures of d+id-wave pairing, such as fractional Shapiro steps, are reported. Still, our recent experiments on 45°-twisted junctions with ultraclean interfaces, which are also realized by cryogenic stacking, show standard Fraunhofer patterns and AC Josephson effect with only integer steps, indicating the absence of d + id-wave pairing. These results have far-reaching influence on understanding the pairing symmetry of twisted cuprates. Future efforts to study the twisted cuprates may include: extending to a wider pool of materials, pushing the thickness to the atomic limit, and adopting other characterization tools. The twisted cuprates may also find applications in high temperature superconducting quantum bit as well as Josephson diodes.
      通信作者: 薛其坤, qkxue@mail.tsinghua.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1403103, 2017YFA0302902)和国家自然科学基金(批准号: 52388201, 12274249, 12141402)资助的课题.
      Corresponding author: Xue Qi-Kun, qkxue@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2022YFA1403103, 2017YFA0302902) and the National Natural Science Foundation of China (Grant Nos. 52388201, 12274249, 12141402).
    [1]

    Yazdani A, da Silva Neto E H, Aynajian P 2016 Annu. Rev. Condens. Matter Phys. 7 11Google Scholar

    [2]

    Tsuei C C, Kirtley J R 2000 Rev. Mod. Phys. 72 969Google Scholar

    [3]

    Misra S, Oh S, Hornbaker D J, DiLuccio T, Eckstein J N, Yazdani A 2002 Phys. Rev. Lett. 89 087002Google Scholar

    [4]

    Zhong Y, Wang Y, Han S, Lü Y F, Wang W L, Zhang D, Ding H, Zhang Y M, Wang L, He K, Zhong R D, Schneeloch J A, Gen G D, Song C L, Ma X C, Xue Q K 2016 Sci. Bull. 61 1239Google Scholar

    [5]

    Fan J Q, Yu X Q, Cheng F J, Wang H, Wang R, Ma X, Hu X P, Zhang D, Ma X C, Xue Q K, Song C L 2022 Natl. Sci. Rev. 9 nwab225Google Scholar

    [6]

    Li Q, Tsay Y N, Suenaga M, Klemm R A, Gu G D, Koshizuka N 1999 Phys. Rev. Lett. 83 4160Google Scholar

    [7]

    Takano Y, Hatano T, Fukuyo A, Ishii A, Ohmori M, Arisawa S, Togano K, Tachiki M 2002 Phys. Rev. B 65 140513Google Scholar

    [8]

    Latyshev Y I, Orlov A P, Nikitina A M, Monceau P, Klemm R A 2004 Phys. Rev. B 70 094517Google Scholar

    [9]

    Zhu Y Y, Liao M H, Zhang Q H, Xie H Y, Meng F Q, Liu Y W, Bai Z H, Ji S H, Zhang J, Jiang K L, Zhong R D, Schneeloch J, Gu G D, Gu L, Ma X C, Zhang D, Xue Q K 2021 Phys. Rev. X 11 031011Google Scholar

    [10]

    Wang H, Zhu Y Y, Bai Z H, Wang Z C, Hu S X, Xie H Y, Hu X P, Cui J, Huang M L, Chen J H, Ding Y, Zhao L, Li X Y, Zhang Q H, Gu L, Zhou X J, Zhu J, Zhang D, Xue Q K 2023 Nat. Commun. 14 5201Google Scholar

    [11]

    Zhu Y Y, Wang H, Wang Z C, Hu S X, Gu G D, Zhu J, Zhang D, Xue Q K 2023 Phys. Rev. B 108 174508Google Scholar

    [12]

    Zhao S Y F, Poccia N, Cui X, Volkov P A, Yoo H, Engelke R, Ronen Y, Zhong R D, Gu G D, Plugge S, Tummuru T, Franz M, Pixley J H, Kim P 2021 arXiv: 2108.13455v1 [cond-mat. supr-con

    [13]

    Lee J, Lee W, Kim G Y, Choi Y B, Park J, Jang S, Gu G D, Choi S Y, Cho G Y, Lee G H, Lee H J 2021 Nano Lett. 21 10469Google Scholar

    [14]

    Lee Y, Martini M, Confalone T, Shokri S, Saggau C N, Wolf D, Gu G D, Watanabe K, Taniguchi T, Montemurro D, Vinokur V M, Nielsch K, Poccia N 2023 Adv. Mater. 35 2209135Google Scholar

    [15]

    Klemm R A 2005 Philos. Mag. 85 801Google Scholar

    [16]

    Yokoyama T, Kawabata S, Kato T, Tanaka Y 2007 Phys. Rev. B 76 134501Google Scholar

    [17]

    Yang Z S, Qin S S, Zhang Q, Fang C, Hu J P 2018 Phys. Rev. B 98 104515Google Scholar

    [18]

    Can O, Tummuru T, Day R P, Elfimov I, Damascelli A, Franz M 2021 Nat. Phys. 17 519Google Scholar

    [19]

    Mercado A, Sahoo S, Franz M 2022 Phys. Rev. Lett. 128 137002Google Scholar

    [20]

    Tummuru T, Plugge S, Franz M 2022 Phys. Rev. B 105 064501Google Scholar

    [21]

    Song X Y, Zhang Y H, Vishwanath A 2022 Phys. Rev. B 105 L201102Google Scholar

    [22]

    Liu Y B, Zhou J, Zhang Y, Chen W Q, Yang F 2023 arXiv: 2301.07553v1 [cond-mat. supr-con

    [23]

    Yuan A, Vituri Y, Berg E, Spivak B, Kivelson S 2023 arXiv: 2305.15472v1 [cond-mat. supr-con

    [24]

    Irie A, Oya G 1997 Physica C Supercond 293 249Google Scholar

    [25]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U.S.A. 102 10451Google Scholar

    [26]

    Jiang D, Hu T, You L X, Li Q, Li A, Wang H M, Mu G, Chen Z Y, Zhang H R, Yu G H, Zhu J, Sun Q J, Lin C T, Xiao H, Xie X M, Jiang M H 2014 Nat. Commun. 5 5708Google Scholar

    [27]

    Liao M H, Zhu Y Y, Zhang J, Zhong R D, Schneeloch J, Gu G D, Jiang K L, Zhang D, Ma X C, Xue Q K 2018 Nano Lett. 18 5660Google Scholar

    [28]

    Yu Y J, Ma L G, Cai P, Zhong R D, Ye C, Shen J, Gu G D, Chen X H, Zhang Y B 2019 Nature 575 156Google Scholar

    [29]

    Ghosh S, Patil V, Basu A, Kuldeep, Dutta A, Jangada D A, Kulkarni R, Thamizhavel A, Steiner J F, Oppen F, Deshmukh M M 2022 arXiv: 2210.11256v2 [cond-mat. supr-con

    [30]

    Inomata K, Sato S, Nakajima K, Tanaka A, Wang H B, Nagao M, Hatano H, Kawabata S 2005 Phys. Rev. Lett. 95 107005Google Scholar

  • 图 1  (a)转角铜氧化物双晶以及s波、d波、d + id波约瑟夫森隧穿的示意图; (b)利用铋锶钙铜氧构建的45°转角的双晶的原子结构示意图, 转角界面上下各取半个原胞的厚度; (c) 转角铜氧化物结中典型电流-电压特性曲线

    Fig. 1.  (a) Schematic drawing of a twisted cuprate bicrystal and the Josephson tunneling due to s-, d-, or d + id-wave pairing; (b) illustration of the atomic structure at the 45°-twisted interface for Bi2Sr2CaCu2O8, here the top or bottom layer has a thickness of half an unit cell; (c) typical current-voltage characteristic of a twisted cuprate junction.

    图 2  (a) 低温下解理再堆叠方法的主要步骤示意图[10]; (b) 高分辨扫描透射电子显微镜所拍摄的铋锶钙铜氧双晶(上)[11]和铋锶镧铜氧双晶(下)[10]的原子结构图

    Fig. 2.  (a) Schematic drawing of major steps in the cryogenic cleave-and-stack method[10]; (b) high resolution scanning tunneling electron microscopy images of twisted Bi-2212[11] and twisted Bi-2201[10] bicrystals.

    图 3  两个研究团队利用室温堆叠后氧退火(I)和低温堆叠(II)两种方法制备出的样品在一系列转角下的约瑟夫森耦合强度 (a) 清华研究团队利用方法I得到的铋锶钙铜氧欠掺杂区间实验数据 [9]; (b) 哈佛研究团队利用方法II得到的铋锶钙铜氧最佳掺杂区间实验数据[12]; (c), (d) 清华研究团队利用方法II得到的铋锶钙铜氧最佳掺杂区间、过掺杂区间实验数据[11]和铋锶镧铜氧最佳掺杂区间的实验数据[10]

    Fig. 3.  Josephson coupling strength as a function of twist angle from two research groups using two methods of room temperature stacking with oxygen post-annealing (I) and cryogenic stacking (II): (a) Data of underdoped Bi-2212 from the research group in Tsinghua University by using method I [9]; (b) data of optimally doped Bi-2212 from the research group in Harvard University by using method II [12]; (c), (d) data of optimally doped Bi-2212, overdoped Bi-2212[11], and optimally doped Bi-2201[10] from the research group in Tsinghua University by using method II.

    图 5  (a) 实验观测到的铜氧化物转角结中的约瑟夫森二极管效应[11], 表现为一个方向(此处为正方向)约瑟夫森临界电流显著大于另一方向的值; (b) 利用约瑟夫森二极管所实现的半波整流, 共重复1000次 [11]

    Fig. 5.  (a) Experimental observation of Josephson diode effect in twisted cuprates[11], the Josephson critical current in one direction (positive direction here) is larger than the one in the other direction; (b) demonstration of rectification effect of a square-wave with 1000 repetitions [11].

    图 4  在转角44.8°的铋锶镧铜氧约瑟夫森结中所测量得到的夫琅禾费衍射图案[10]

    Fig. 4.  Fraunhofer diffraction pattern obtained from a 44.8°-twisted Bi-2201 Josephson junction [10].

  • [1]

    Yazdani A, da Silva Neto E H, Aynajian P 2016 Annu. Rev. Condens. Matter Phys. 7 11Google Scholar

    [2]

    Tsuei C C, Kirtley J R 2000 Rev. Mod. Phys. 72 969Google Scholar

    [3]

    Misra S, Oh S, Hornbaker D J, DiLuccio T, Eckstein J N, Yazdani A 2002 Phys. Rev. Lett. 89 087002Google Scholar

    [4]

    Zhong Y, Wang Y, Han S, Lü Y F, Wang W L, Zhang D, Ding H, Zhang Y M, Wang L, He K, Zhong R D, Schneeloch J A, Gen G D, Song C L, Ma X C, Xue Q K 2016 Sci. Bull. 61 1239Google Scholar

    [5]

    Fan J Q, Yu X Q, Cheng F J, Wang H, Wang R, Ma X, Hu X P, Zhang D, Ma X C, Xue Q K, Song C L 2022 Natl. Sci. Rev. 9 nwab225Google Scholar

    [6]

    Li Q, Tsay Y N, Suenaga M, Klemm R A, Gu G D, Koshizuka N 1999 Phys. Rev. Lett. 83 4160Google Scholar

    [7]

    Takano Y, Hatano T, Fukuyo A, Ishii A, Ohmori M, Arisawa S, Togano K, Tachiki M 2002 Phys. Rev. B 65 140513Google Scholar

    [8]

    Latyshev Y I, Orlov A P, Nikitina A M, Monceau P, Klemm R A 2004 Phys. Rev. B 70 094517Google Scholar

    [9]

    Zhu Y Y, Liao M H, Zhang Q H, Xie H Y, Meng F Q, Liu Y W, Bai Z H, Ji S H, Zhang J, Jiang K L, Zhong R D, Schneeloch J, Gu G D, Gu L, Ma X C, Zhang D, Xue Q K 2021 Phys. Rev. X 11 031011Google Scholar

    [10]

    Wang H, Zhu Y Y, Bai Z H, Wang Z C, Hu S X, Xie H Y, Hu X P, Cui J, Huang M L, Chen J H, Ding Y, Zhao L, Li X Y, Zhang Q H, Gu L, Zhou X J, Zhu J, Zhang D, Xue Q K 2023 Nat. Commun. 14 5201Google Scholar

    [11]

    Zhu Y Y, Wang H, Wang Z C, Hu S X, Gu G D, Zhu J, Zhang D, Xue Q K 2023 Phys. Rev. B 108 174508Google Scholar

    [12]

    Zhao S Y F, Poccia N, Cui X, Volkov P A, Yoo H, Engelke R, Ronen Y, Zhong R D, Gu G D, Plugge S, Tummuru T, Franz M, Pixley J H, Kim P 2021 arXiv: 2108.13455v1 [cond-mat. supr-con

    [13]

    Lee J, Lee W, Kim G Y, Choi Y B, Park J, Jang S, Gu G D, Choi S Y, Cho G Y, Lee G H, Lee H J 2021 Nano Lett. 21 10469Google Scholar

    [14]

    Lee Y, Martini M, Confalone T, Shokri S, Saggau C N, Wolf D, Gu G D, Watanabe K, Taniguchi T, Montemurro D, Vinokur V M, Nielsch K, Poccia N 2023 Adv. Mater. 35 2209135Google Scholar

    [15]

    Klemm R A 2005 Philos. Mag. 85 801Google Scholar

    [16]

    Yokoyama T, Kawabata S, Kato T, Tanaka Y 2007 Phys. Rev. B 76 134501Google Scholar

    [17]

    Yang Z S, Qin S S, Zhang Q, Fang C, Hu J P 2018 Phys. Rev. B 98 104515Google Scholar

    [18]

    Can O, Tummuru T, Day R P, Elfimov I, Damascelli A, Franz M 2021 Nat. Phys. 17 519Google Scholar

    [19]

    Mercado A, Sahoo S, Franz M 2022 Phys. Rev. Lett. 128 137002Google Scholar

    [20]

    Tummuru T, Plugge S, Franz M 2022 Phys. Rev. B 105 064501Google Scholar

    [21]

    Song X Y, Zhang Y H, Vishwanath A 2022 Phys. Rev. B 105 L201102Google Scholar

    [22]

    Liu Y B, Zhou J, Zhang Y, Chen W Q, Yang F 2023 arXiv: 2301.07553v1 [cond-mat. supr-con

    [23]

    Yuan A, Vituri Y, Berg E, Spivak B, Kivelson S 2023 arXiv: 2305.15472v1 [cond-mat. supr-con

    [24]

    Irie A, Oya G 1997 Physica C Supercond 293 249Google Scholar

    [25]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U.S.A. 102 10451Google Scholar

    [26]

    Jiang D, Hu T, You L X, Li Q, Li A, Wang H M, Mu G, Chen Z Y, Zhang H R, Yu G H, Zhu J, Sun Q J, Lin C T, Xiao H, Xie X M, Jiang M H 2014 Nat. Commun. 5 5708Google Scholar

    [27]

    Liao M H, Zhu Y Y, Zhang J, Zhong R D, Schneeloch J, Gu G D, Jiang K L, Zhang D, Ma X C, Xue Q K 2018 Nano Lett. 18 5660Google Scholar

    [28]

    Yu Y J, Ma L G, Cai P, Zhong R D, Ye C, Shen J, Gu G D, Chen X H, Zhang Y B 2019 Nature 575 156Google Scholar

    [29]

    Ghosh S, Patil V, Basu A, Kuldeep, Dutta A, Jangada D A, Kulkarni R, Thamizhavel A, Steiner J F, Oppen F, Deshmukh M M 2022 arXiv: 2210.11256v2 [cond-mat. supr-con

    [30]

    Inomata K, Sato S, Nakajima K, Tanaka A, Wang H B, Nagao M, Hatano H, Kawabata S 2005 Phys. Rev. Lett. 95 107005Google Scholar

  • [1] 初纯光, 王安琦, 廖志敏. 拓扑半金属-超导体异质结的约瑟夫森效应. 物理学报, 2023, 72(8): 087401. doi: 10.7498/aps.72.20230397
    [2] 李中祥, 王淑亚, 黄自强, 王晨, 穆清. 原子级控制的约瑟夫森结中Al2O3势垒层制备工艺. 物理学报, 2022, 71(21): 218102. doi: 10.7498/aps.71.20220820
    [3] 韩金舸, 欧阳鹏辉, 李恩平, 王轶文, 韦联福. 超导约瑟夫森结物理参数的实验推算. 物理学报, 2021, 70(17): 170304. doi: 10.7498/aps.70.20210393
    [4] 陈恒杰, 薛航, 李邵雄, 王镇. 一种通过约瑟夫森结非线性频率响应确定微波耗散的方法. 物理学报, 2019, 68(11): 118501. doi: 10.7498/aps.68.20190167
    [5] 王兰若, 钟源, 李劲劲, 屈继峰, 钟青, 曹文会, 王雪深, 周志强, 付凯, 石勇. 用于精密测量玻尔兹曼常数的量子电压噪声源芯片研制. 物理学报, 2018, 67(10): 108501. doi: 10.7498/aps.67.20172643
    [6] 王松, 王星云, 周章渝, 杨发顺, 杨健, 傅兴华. 硼膜制备工艺、微观结构及其在硼化镁超导约瑟夫森结中的应用. 物理学报, 2016, 65(1): 017401. doi: 10.7498/aps.65.017401
    [7] 陈钊, 何根芳, 张青雅, 刘建设, 李铁夫, 陈炜. 具有Washer型输入线圈的超导量子干涉放大器的制备与表征. 物理学报, 2015, 64(12): 128501. doi: 10.7498/aps.64.128501
    [8] 金霞, 董正超, 梁志鹏, 仲崇贵. 磁性d波超导/铁磁/磁性d波超导结中的约瑟夫森效应. 物理学报, 2013, 62(4): 047401. doi: 10.7498/aps.62.047401
    [9] 曹文会, 李劲劲, 钟青, 郭小玮, 贺青, 迟宗涛. 用于电压基准的Nb/NbxSi1-x/Nb约瑟夫森单结的研制. 物理学报, 2012, 61(17): 170304. doi: 10.7498/aps.61.170304
    [10] 张立森, 蔡理, 冯朝文. 线性延时反馈Josephson结的Hopf分岔和混沌化. 物理学报, 2011, 60(6): 060306. doi: 10.7498/aps.60.060306
    [11] 张立森, 蔡理, 冯朝文. 约瑟夫森结中周期解及其稳定性的解析分析. 物理学报, 2011, 60(3): 030308. doi: 10.7498/aps.60.030308
    [12] 王争, 赵新杰, 何明, 周铁戈, 岳宏卫, 阎少林. 嵌入到Fabry-Perot谐振腔的双晶约瑟夫森结阵列的阻抗匹配和相位锁定研究. 物理学报, 2010, 59(5): 3481-3487. doi: 10.7498/aps.59.3481
    [13] 岳宏卫, 阎少林, 周铁戈, 谢清连, 游峰, 王争, 何明, 赵新杰, 方兰, 杨扬, 王福音, 陶薇薇. 嵌入Fabry-Perot谐振腔的高温超导双晶约瑟夫森结的毫米波辐照特性研究. 物理学报, 2010, 59(2): 1282-1287. doi: 10.7498/aps.59.1282
    [14] 岳宏卫, 王争, 樊彬, 宋凤斌, 游峰, 赵新杰, 何明, 方兰, 阎少林. 高温超导双晶约瑟夫森结阵列毫米波相干辐射. 物理学报, 2010, 59(8): 5755-5758. doi: 10.7498/aps.59.5755
    [15] 崔大健, 林德华, 于海峰, 彭智慧, 朱晓波, 郑东宁, 景秀年, 吕 力, 赵士平. 本征约瑟夫森结跳变电流分布的量子修正. 物理学报, 2008, 57(9): 5933-5936. doi: 10.7498/aps.57.5933
    [16] 李照鑫, 邹 健, 蔡金芳, 邵 彬. 电荷量子比特与量子化光场之间的纠缠. 物理学报, 2006, 55(4): 1580-1584. doi: 10.7498/aps.55.1580
    [17] 肖宇飞, 王登龙, 王凤姣, 颜晓红. 非对称的玻色-爱因斯坦凝聚中的约瑟夫森结的动力学性质. 物理学报, 2006, 55(2): 547-550. doi: 10.7498/aps.55.547
    [18] 王震宇, 廖红印, 周世平. 直流偏置的与RLC谐振器耦合的约瑟夫森结动力学行为的数值模拟. 物理学报, 2001, 50(10): 1996-2000. doi: 10.7498/aps.50.1996
    [19] 刘必荣, H.MANTLE. 约瑟夫森结AlOx-Al隧道势垒的实验研究. 物理学报, 1997, 46(1): 22-27. doi: 10.7498/aps.46.22
    [20] 刘东, 曹淑兰, 桑亚男, 王慧芝, 刘福绥, 万玉珍. 约瑟夫森隧道结微波感应效应的实验和理论研究. 物理学报, 1976, 25(2): 97-104. doi: 10.7498/aps.25.97
计量
  • 文章访问数:  3355
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-06
  • 修回日期:  2023-11-17
  • 上网日期:  2023-11-24
  • 刊出日期:  2023-12-05

/

返回文章
返回