搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超导约瑟夫森结物理参数的实验推算

韩金舸 欧阳鹏辉 李恩平 王轶文 韦联福

引用本文:
Citation:

超导约瑟夫森结物理参数的实验推算

韩金舸, 欧阳鹏辉, 李恩平, 王轶文, 韦联福

Experimentally estimating of physical parameters of the fabricated superconducting Josephson junctions

Han Jin-Ge, Ouyang Peng-Hui, Li En-Ping, Wang Yi-Wen, Wei Lian-Fu
PDF
HTML
导出引用
  • 超导约瑟夫森结是实现超导量子计算和微波单光子探测的核心器件, 其物理参数很难直接测定. 与之前常用的测量结微波激励效应估计方法不同, 本文通过实验测量低频电流驱动下的约瑟夫森结I-V曲线及其跳变电流统计分布, 并与基于标准电阻电容分路结模型数值模拟进行比对, 推算出了约瑟夫森结的临界电流$I_{\rm c}$、电容C、电阻R及阻尼参数$\beta_{\rm c}$等物理参数. 结果表明, 所推算的参数值与基于微观理论推导所得到的Ambgaokar-Baratoff公式基本符合, 可供约瑟夫森结的器件参数按需设计和制备工艺的参数设置等参考.
    Superconducting Josephson junctions are the key devices for superconducting quantum computation and microwave single photon detection. It is important to fabricate the Josephson junctions with designable parameters. Different from the typical methods to calibrate the parameters of the Josephson junctions,, e.g., by using the microwave drivings and measuring the ratio of hysteresis current to critical one, in this paper we achieve the calibrations with the low frequency current biases. First, we measure the I-V characteristic curves of the fabricated Al/AlOx/Al junctions. Second, we measure the statistical distributions of the jump currents of the Josephson junction samples driven by the low frequency (@71.3 Hz) biased currents at an extremely low temperature of 50 mK. These two sets of experimental data are utilized to estimate the typical parameters of the Josephson junction, i.e., junction capacitance, critical current, and the damping coefficient, which are difficult to be directly measured in the usual experiments. The critical current and capacitance of the Josephson junction are estimated by fitting the statistical distribution of the measured jump currents with the relevant theoretical model of the "particle" escape from the potential driven by the thermal excitations and quantum tunnelings. With the calibrated critical current of the junction, the relation between $I/I_{\rm{c}}$ and ${\rm{d}}\varphi/{\rm{d}}\tau,\,\tau=\omega_{\rm{c}}t$ (with $\omega_{\rm{c}}$ being the plasmon frequency) is obtained from the measured $I\text-V$ curve. Using the standard resistively capacitance shunted junction model to fit such a relation, the damping coefficient of the junction can be estimated. With the estimated critical current, capacitance, and damping coefficient, the resistance $R_n$ of the junction at the working temperature is calibrated consequently. It is shown that our estimated results are in good agreement with that predicted by the famous Ambgaokar-Baratoff formula. Physically, the method demonstrated here possesses two advantages. First, it is relatively insensitive to the noise during the measurement of the junction's I-V characteristic curve, compared with the usual method to calibrate damping coefficient by measuring the ratio of hysteresis current to critical current. Second, only the low frequency driving is required to measure the jump current of the junction for estimating the damping coefficient. The microwave driving is not necessary. Hopefully, the present work is useful for the on-demand designs of the Josephson junctions for various applications.
      通信作者: 韦联福, lfwei@dhu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974290, 61871333)资助的课题
      Corresponding author: Wei Lian-Fu, lfwei@dhu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974290, 61871333)
    [1]

    Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, Malley P O, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N, Martinis J M 2014 Nature 508 500Google Scholar

    [2]

    李春光, 王佳, 吴云, 王旭, 孙亮, 董慧, 高波, 李浩, 尤立星, 林志荣, 任浩, 李婧, 张文, 贺青, 王轶文, 韦联福, 孙汉聪, 王华兵, 李劲劲, 屈继峰 2021 物理学报 70 018501Google Scholar

    Li C G, Wang J, Wu Y, Wang X, Sun L, Dong H, Gao B, Li H, You L X, Lin Z R, Ren H, Li J, Zhang W, He Q, Wang Y W, Wei L F, Sun H C, Wang H B, Li J J, Qu J F 2021 Acta Phys. Sin. 70 018501Google Scholar

    [3]

    Arute F, Arya K, Babbush R, Bacon D, Bardin J, Barends R, Biswas R, Boixo S, Brandao F, Buell D, Burkett B, Chen Y, Chen Z J, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff B, Guerin K, Habegger S, Harrigan M, Hartmann M, Ho A, Hoffmann M, Huang T, Humble T, Isakov S, Jeffrey E, Zhang J, Kafri D, Kechedzhi K, Kelly J, Klimov P, Knysh S, Korotkov A, Kostritsa F, Landhuis D, Lindmark M, Lucero E, Lyakh D, Mandrà S, McClean J, McEwen M, Megrant A, Mi X, Michielsen K, Mohseni M, Mutus J, Naaman O, Neeley M, Neill C, Niu M Y, Ostby E, Petukhov A, Platt J, Quintana C, Rieffel E, Roushan P, Rubin N, Sank D, Satzinger K, Smelyanskiy V, Sung K, Trevithick M, Vainsencher A, Villalonga B, Yao T J, Yeh P, Zalcman A, Neven H, Martinis J 2019 Nature 574 505Google Scholar

    [4]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y X, Jiang X, Gan L, Yang G W, You L X, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460

    [5]

    Sathyamoorthy S R, Stace T M, Johansson G 2016 C. R. Phys. 17 756Google Scholar

    [6]

    Chen Y F, Hover D, Sendelbach S, Maurer L, Merkel S T, Pritchett E J, Wilhelm F K, McDermott R 2011 Phys. Rev. Lett. 370 1460

    [7]

    张裕恒, 李玉芝 2009 超导物理 (卷3) (合肥: 中国科学技术大学出版社) 第342−484页

    Zhang Y H, Li Y Z 2009 Superconductor Physics (Vol. 3) (Hefei: China University of science and Technology Press) pp342−484 (in Chinese)

    [8]

    郑东宁 2021 物理学报 70 018502

    Zheng D L 2021 Acta Phys. Sin. 70 018502

    [9]

    Clarke J, Wilhelm F K 2008 Nature 453 1031Google Scholar

    [10]

    Sun G Z, Wang Y W, Cao J Y, Chen J, Ji Z M, Kang L, Xu W W, Yu Y, Han S Y, Wu P H 2008 Phys. Rev. B 77 104531Google Scholar

    [11]

    Stewart W C 1968 Appl. Phys. Lett. 12 277Google Scholar

    [12]

    Makhlin Y, Sch?n G, Shnirman A 2001 Rev. Mod. Phys. 73 357Google Scholar

    [13]

    Stoutimore M J A, Rossolenko A N, Bolginov V V, Oboznov V A, Rusanov A Y, Baranov D S, Pugach N, Frolov S M, Ryazanov V V, Van Harlingen D J 2018 Phys. Rev. Lett. 121 17

    [14]

    崔大健, 林德华, 于海峰, 彭智慧, 朱晓波, 郑东宁, 景秀年, 吕力, 赵士平 2008 物理学报 09 5933Google Scholar

    Cui D J, Lin D H, Yu H F, Peng Z H, Zhu X B, Zheng D N, Jing X N, Lu L, Zhao S P 2008 Acta Phys. Sin. 09 5933Google Scholar

    [15]

    Kramers H A 1940 Physica 7 284Google Scholar

    [16]

    Caldeira A O, Leggett A J 1981 Phys. Rev. Lett. 46 211Google Scholar

    [17]

    Trees B R, Saranathan V, Stroud D 2005 Phys. Rev. E 71 016215Google Scholar

    [18]

    陈伟 2019 博士学位论文 (南京: 南京大学)

    Chen W 2019 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [19]

    曹俊宇, 孙国柱, 王轶文, 陈健, 吴培亨 2007 低温物理学报 03 196

    Cao J Y, Sun G Z, Wang Y W, Chen J, Wu P H 2007 Chin. J. Low Temp. 2007 03 196 (in Chinese)

    [20]

    Ambegaokar V, Baratoff A 1963 Phys. Rev. Lett. 10 486Google Scholar

  • 图 1  电流偏置下的约瑟夫森结势能曲线

    Fig. 1.  Potential of a current-biased Josephson junction.

    图 2  约瑟夫森结制备流程图

    Fig. 2.  Preparation process of a Josephson junction.

    图 3  约瑟夫森结样品

    Fig. 3.  Josephson junction sample.

    图 4  约瑟夫森结I-V特性曲线

    Fig. 4.  Measured I-V characteristic curve of the fabricated Josephson junction.

    图 5  约瑟夫森结跳变电流实验测量的时序图

    Fig. 5.  Time sequence diagram for the junction jump current measurements.

    图 6  约瑟夫森结跳变电流及其次数统计

    Fig. 6.  Josephson junction jump currents and their statistical distributions.

    图 7  结跳变电流的归一化统计分布: 理论拟合(红实线)与实验数据(点状线)

    Fig. 7.  Statistical distributions of the junction jump currents: theoretical simulations (red soild line), and measurement data (dot line).

    图 8  约瑟夫森结的等效I-V曲线

    Fig. 8.  Effective I-V curve of the measured Josephson junction

    图 9  斜率K随阻尼参数变化$\beta_{\rm c}$关系

    Fig. 9.  Relationship between the parameters $\beta_{\rm c}$ and K.

    表 1  不同参数取值对实验数据拟合的偏差度分析

    Table 1.  Deviations from the data simulated by using the different theoretical parameters.

    $I_{\rm c}/(10^{-7}{\rm A})$ C/fF 峰值位置
    偏差(误差/
    实验值)
    峰值高度
    偏差(误差/
    实验值)
    半高宽偏差
    (误差/实验值)
    $ 5.56 $ $ 23.3 $ 0.06% 9.75% 3.52%
    $ 5.57 $ $ 23.3 $ 0.27% 9.75% 3.52%
    $ 5.55 $ $ 23.3 $ 0.15% 9.75% 3.52%
    $ 5.56 $ $ 23.4 $ 0.17% 9.74% 3.53%
    $ 5.56 $ $ 23.2 $ 0.31% 9.76% 3.52%
    下载: 导出CSV
  • [1]

    Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, Malley P O, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N, Martinis J M 2014 Nature 508 500Google Scholar

    [2]

    李春光, 王佳, 吴云, 王旭, 孙亮, 董慧, 高波, 李浩, 尤立星, 林志荣, 任浩, 李婧, 张文, 贺青, 王轶文, 韦联福, 孙汉聪, 王华兵, 李劲劲, 屈继峰 2021 物理学报 70 018501Google Scholar

    Li C G, Wang J, Wu Y, Wang X, Sun L, Dong H, Gao B, Li H, You L X, Lin Z R, Ren H, Li J, Zhang W, He Q, Wang Y W, Wei L F, Sun H C, Wang H B, Li J J, Qu J F 2021 Acta Phys. Sin. 70 018501Google Scholar

    [3]

    Arute F, Arya K, Babbush R, Bacon D, Bardin J, Barends R, Biswas R, Boixo S, Brandao F, Buell D, Burkett B, Chen Y, Chen Z J, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff B, Guerin K, Habegger S, Harrigan M, Hartmann M, Ho A, Hoffmann M, Huang T, Humble T, Isakov S, Jeffrey E, Zhang J, Kafri D, Kechedzhi K, Kelly J, Klimov P, Knysh S, Korotkov A, Kostritsa F, Landhuis D, Lindmark M, Lucero E, Lyakh D, Mandrà S, McClean J, McEwen M, Megrant A, Mi X, Michielsen K, Mohseni M, Mutus J, Naaman O, Neeley M, Neill C, Niu M Y, Ostby E, Petukhov A, Platt J, Quintana C, Rieffel E, Roushan P, Rubin N, Sank D, Satzinger K, Smelyanskiy V, Sung K, Trevithick M, Vainsencher A, Villalonga B, Yao T J, Yeh P, Zalcman A, Neven H, Martinis J 2019 Nature 574 505Google Scholar

    [4]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y X, Jiang X, Gan L, Yang G W, You L X, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460

    [5]

    Sathyamoorthy S R, Stace T M, Johansson G 2016 C. R. Phys. 17 756Google Scholar

    [6]

    Chen Y F, Hover D, Sendelbach S, Maurer L, Merkel S T, Pritchett E J, Wilhelm F K, McDermott R 2011 Phys. Rev. Lett. 370 1460

    [7]

    张裕恒, 李玉芝 2009 超导物理 (卷3) (合肥: 中国科学技术大学出版社) 第342−484页

    Zhang Y H, Li Y Z 2009 Superconductor Physics (Vol. 3) (Hefei: China University of science and Technology Press) pp342−484 (in Chinese)

    [8]

    郑东宁 2021 物理学报 70 018502

    Zheng D L 2021 Acta Phys. Sin. 70 018502

    [9]

    Clarke J, Wilhelm F K 2008 Nature 453 1031Google Scholar

    [10]

    Sun G Z, Wang Y W, Cao J Y, Chen J, Ji Z M, Kang L, Xu W W, Yu Y, Han S Y, Wu P H 2008 Phys. Rev. B 77 104531Google Scholar

    [11]

    Stewart W C 1968 Appl. Phys. Lett. 12 277Google Scholar

    [12]

    Makhlin Y, Sch?n G, Shnirman A 2001 Rev. Mod. Phys. 73 357Google Scholar

    [13]

    Stoutimore M J A, Rossolenko A N, Bolginov V V, Oboznov V A, Rusanov A Y, Baranov D S, Pugach N, Frolov S M, Ryazanov V V, Van Harlingen D J 2018 Phys. Rev. Lett. 121 17

    [14]

    崔大健, 林德华, 于海峰, 彭智慧, 朱晓波, 郑东宁, 景秀年, 吕力, 赵士平 2008 物理学报 09 5933Google Scholar

    Cui D J, Lin D H, Yu H F, Peng Z H, Zhu X B, Zheng D N, Jing X N, Lu L, Zhao S P 2008 Acta Phys. Sin. 09 5933Google Scholar

    [15]

    Kramers H A 1940 Physica 7 284Google Scholar

    [16]

    Caldeira A O, Leggett A J 1981 Phys. Rev. Lett. 46 211Google Scholar

    [17]

    Trees B R, Saranathan V, Stroud D 2005 Phys. Rev. E 71 016215Google Scholar

    [18]

    陈伟 2019 博士学位论文 (南京: 南京大学)

    Chen W 2019 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [19]

    曹俊宇, 孙国柱, 王轶文, 陈健, 吴培亨 2007 低温物理学报 03 196

    Cao J Y, Sun G Z, Wang Y W, Chen J, Wu P H 2007 Chin. J. Low Temp. 2007 03 196 (in Chinese)

    [20]

    Ambegaokar V, Baratoff A 1963 Phys. Rev. Lett. 10 486Google Scholar

  • [1] 张定, 朱玉莹, 汪恒, 薛其坤. 转角铜氧化物中的约瑟夫森效应. 物理学报, 2023, 72(23): 237402. doi: 10.7498/aps.72.20231815
    [2] 李中祥, 王淑亚, 黄自强, 王晨, 穆清. 原子级控制的约瑟夫森结中Al2O3势垒层制备工艺. 物理学报, 2022, 71(21): 218102. doi: 10.7498/aps.71.20220820
    [3] 陈恒杰, 薛航, 李邵雄, 王镇. 一种通过约瑟夫森结非线性频率响应确定微波耗散的方法. 物理学报, 2019, 68(11): 118501. doi: 10.7498/aps.68.20190167
    [4] 王兰若, 钟源, 李劲劲, 屈继峰, 钟青, 曹文会, 王雪深, 周志强, 付凯, 石勇. 用于精密测量玻尔兹曼常数的量子电压噪声源芯片研制. 物理学报, 2018, 67(10): 108501. doi: 10.7498/aps.67.20172643
    [5] 王松, 王星云, 周章渝, 杨发顺, 杨健, 傅兴华. 硼膜制备工艺、微观结构及其在硼化镁超导约瑟夫森结中的应用. 物理学报, 2016, 65(1): 017401. doi: 10.7498/aps.65.017401
    [6] 陈钊, 何根芳, 张青雅, 刘建设, 李铁夫, 陈炜. 具有Washer型输入线圈的超导量子干涉放大器的制备与表征. 物理学报, 2015, 64(12): 128501. doi: 10.7498/aps.64.128501
    [7] 曹文会, 李劲劲, 钟青, 郭小玮, 贺青, 迟宗涛. 用于电压基准的Nb/NbxSi1-x/Nb约瑟夫森单结的研制. 物理学报, 2012, 61(17): 170304. doi: 10.7498/aps.61.170304
    [8] 张立森, 蔡理, 冯朝文. 线性延时反馈Josephson结的Hopf分岔和混沌化. 物理学报, 2011, 60(6): 060306. doi: 10.7498/aps.60.060306
    [9] 张立森, 蔡理, 冯朝文. 约瑟夫森结中周期解及其稳定性的解析分析. 物理学报, 2011, 60(3): 030308. doi: 10.7498/aps.60.030308
    [10] 岳宏卫, 阎少林, 周铁戈, 谢清连, 游峰, 王争, 何明, 赵新杰, 方兰, 杨扬, 王福音, 陶薇薇. 嵌入Fabry-Perot谐振腔的高温超导双晶约瑟夫森结的毫米波辐照特性研究. 物理学报, 2010, 59(2): 1282-1287. doi: 10.7498/aps.59.1282
    [11] 岳宏卫, 王争, 樊彬, 宋凤斌, 游峰, 赵新杰, 何明, 方兰, 阎少林. 高温超导双晶约瑟夫森结阵列毫米波相干辐射. 物理学报, 2010, 59(8): 5755-5758. doi: 10.7498/aps.59.5755
    [12] 雷佑铭, 徐 伟. 一类约瑟夫森结混沌系统的谐和共振控制. 物理学报, 2008, 57(6): 3342-3352. doi: 10.7498/aps.57.3342
    [13] 崔大健, 林德华, 于海峰, 彭智慧, 朱晓波, 郑东宁, 景秀年, 吕 力, 赵士平. 本征约瑟夫森结跳变电流分布的量子修正. 物理学报, 2008, 57(9): 5933-5936. doi: 10.7498/aps.57.5933
    [14] 吴炳国, 赵志刚, 尤育新, 刘 楣. 二维约瑟夫森结阵列中的相变及噪声频谱研究. 物理学报, 2007, 56(3): 1680-1685. doi: 10.7498/aps.56.1680
    [15] 周铁戈, 宋凤斌, 左 涛, 顾 静, 夏侯海, 胡雅婷, 赵新杰, 方 兰, 阎少林. 本征约瑟夫森结阵列的PSpice模型及混沌行为研究. 物理学报, 2007, 56(11): 6307-6314. doi: 10.7498/aps.56.6307
    [16] 李照鑫, 邹 健, 蔡金芳, 邵 彬. 电荷量子比特与量子化光场之间的纠缠. 物理学报, 2006, 55(4): 1580-1584. doi: 10.7498/aps.55.1580
    [17] 肖宇飞, 王登龙, 王凤姣, 颜晓红. 非对称的玻色-爱因斯坦凝聚中的约瑟夫森结的动力学性质. 物理学报, 2006, 55(2): 547-550. doi: 10.7498/aps.55.547
    [18] 王震宇, 廖红印, 周世平. 直流偏置的与RLC谐振器耦合的约瑟夫森结动力学行为的数值模拟. 物理学报, 2001, 50(10): 1996-2000. doi: 10.7498/aps.50.1996
    [19] 姚希贤. 关于电阻分路约瑟夫森结的解析解. 物理学报, 1978, 27(5): 559-568. doi: 10.7498/aps.27.559
    [20] 刘东, 曹淑兰, 桑亚男, 王慧芝, 刘福绥, 万玉珍. 约瑟夫森隧道结微波感应效应的实验和理论研究. 物理学报, 1976, 25(2): 97-104. doi: 10.7498/aps.25.97
计量
  • 文章访问数:  7021
  • PDF下载量:  256
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-02
  • 修回日期:  2021-04-23
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回