搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同分子取向下氢分子非次序双电离对核间距的依赖关系

童爱红 廖青 周月明 陆培祥

引用本文:
Citation:

不同分子取向下氢分子非次序双电离对核间距的依赖关系

童爱红, 廖青, 周月明, 陆培祥

Internuclear-distance dependence of nonsequential double ionization of H2 in different alignments

Tong Ai-Hong, Liao Qing, Zhou Yue-Ming, Lu Pei-Xiang
PDF
导出引用
  • 利用三维经典系综模型研究了氢分子非次序双电离对核间距的依赖性.在不同分子取向下,氢分子双电离率随核间距的增大而先增大后减小,在核间距为4a.u.时取最大值.氢分子非次序双电离对核间距的依赖性随分子轴与激光偏振方向间夹角φ的增大而减弱.φ=0时,氢分子非次序双电离包含丰富的相关模式,对核间距有强烈的依赖性φ=π/2时,不同核间距下的相关模式相似,重碰撞在双电离过程中发挥更重要的作用.这些结果表明分子结构对双原子分子非次序双电离有重要影响.
    Using a three-dimensional classical ensemble, we have investigated the internuclear distance (R) dependence of nonsequential double ionization (NSDI) of H2 molecules. In all alignments, as R increases, the double ionization (DI) rate first increases and then decreases, and it reaches its maxima when R is 4a.u.. The dependence of NSDI of H2 on R weakens as the angle between molecular axis and laser polarization(φ) increases. When φ is zero, the NSDI of H2 provides rich correlation patterns, which is strongly dependent on R. When φ is π/2, the correlation patterns are similar for different values of R and recollisions play a more important role in DI process. These results indicate that molecular structure has an important influence on NSDI of diatomic molecules.
    • 基金项目: 国家重点基础研究发展计划(批准号:2006CB806006),国家自然科学基金(批准号:10774054)资助的课题.
    [1]

    Lan P F, Lu P X, Li F, Li Y H, Yang Z Y 2008 Opt. Express 16 5868

    [2]

    Hong W Y, Yng Z Y, lan P F, Zhang Q B, Li Q G, Lu P X, 2009 Acta Phys. Sin. 58 4914 (in Chinese) [洪伟毅、杨振宇、兰鹏飞、张庆彬、李钱光、陆培祥 2009 物理学报58 4914]

    [3]

    Zhang Q B, Lan P F, Hong W Y, Liao Q, Yang Z Y, Lu P X 2009 Acta Phys. Sin. 58 4908 (in Chinese) [张庆彬、兰鹏飞、洪伟毅、廖 青、杨振宇、陆培祥 2009 物理学报58 4908]

    [4]

    Liao Q, Lu P X, Lan P F, Cao W, Li Y H 2008 Phys. Rev. A 77 013408

    [5]

    Paulus G G, Lindner F, Walther H, Baltuska A, Goulielmakis E, Lezius M, Krausz F 2003 Phys. Rev. Lett. 91 253004

    [6]

    Lein M, Gross E K U, Engel V 2000 Phys. Rev. Lett. 85 4707

    [7]

    Saugout S, Cornaggia C 2006 Phys. Rev. A 73 041406(R)

    [8]

    Zhou Y M, Liao Q, Zhang Q B, Hong W Y, Lu P X 2010 Opt. Express 18 632

    [9]

    L’Huillier A, Lompre L A, Mainfray G, Manus C 1983 Phys. Rev. A 27 2503

    [10]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227

    [11]

    Liu X, Rottke H, Eremina E, Sandner W, Goulielmakis E, Keeffe K O, Lezius M, Krausz F, Lindner F, Schatzel M G, Paulus G G, Walther H 2004 Phys. Rev. Lett. 93 263001

    [12]

    Liao Q, Lu P X, Zhang Q B, Yang Z Y, Wang X B 2008 Opt. Express 16 17070

    [13]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [14]

    Zuo T, Bandrauk A D 1996 Phys. Rev. A 52 R2511

    [15]

    Saugout S 2008 Phys. Rev. A 77 023404

    [16]

    Gibson G N, Li M, Guo C, Neira J 1997 Phys. Rev. Lett. 79 2022

    [17]

    Trump C, Rottke H, Wittmann M, Korn G, Sandner W, Lein M, Engel V 2000 Phys. Rev. A 62 063402

    [18]

    Yu H, Zuo T, Bandrauk A D 1996 Phys. Rev. A 54 3290

    [19]

    Saenz A 2000 Phys. Rev. A 61 051402

    [20]

    Alnaser A S, Tong X M, Osipov T, Voss S, Maharjan C M, Ranitovic P, Ulrich B, Shan B, Chang Z, Lin C D, Cocke C L 2004 Phys. Rev. Lett.93 183202

    [21]

    Tong A H, Liao Q, Zhou Y M, Lu P X 2010 Opt. Express 18 9064

    [22]

    Codling K, Frasinski L J, Hatherly P A 1989 J. Phys. B 22 L321

    [23]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008

    [24]

    Haan S L, Van Dyke J S, Smith Z S 2008 Phys. Rev. Lett. 101 113001

    [25]

    Liao Q, Lu P X 2009 Opt. Express 17 15550

    [26]

    Zhou Y M, Liao Q, Lu P X 2009 Phys. Rev. A 80 023412

    [27]

    Zhou Y M, Liao Q, Lan P F, Lu P X 2008 Chin.Phys.Lett. 25 3950

    [28]

    Tang Q B, Zhang D L, Yu B H, Chen D 2010 Acta Phys. Sin. 59 7775 (in Chinese) [汤清彬、张东玲、余本海、陈 东 2010 物理学报59 7775]

    [29]

    Nguyen-Dang T T, Chteauneuf F, Manoli S 1997 Phys. Rev. A 56 2142

    [30]

    Staudte A, Ruiz C, Schöffler M, Schössler S, Zeidler D, Weber Th, Meckel M, Villeneuve D M, Corkum P B, Becker A, Dörner R 2007 Phys. Rev. Lett. 99 263002

    [31]

    Weber Th, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Dörner R 2000 Nature 405 658

    [32]

    Feuerstein B, Moshammer R, Fischer D, Dorn A,Schröter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Höhr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Sandner W 2001 Phys. Rev. Lett. 87 043003

  • [1]

    Lan P F, Lu P X, Li F, Li Y H, Yang Z Y 2008 Opt. Express 16 5868

    [2]

    Hong W Y, Yng Z Y, lan P F, Zhang Q B, Li Q G, Lu P X, 2009 Acta Phys. Sin. 58 4914 (in Chinese) [洪伟毅、杨振宇、兰鹏飞、张庆彬、李钱光、陆培祥 2009 物理学报58 4914]

    [3]

    Zhang Q B, Lan P F, Hong W Y, Liao Q, Yang Z Y, Lu P X 2009 Acta Phys. Sin. 58 4908 (in Chinese) [张庆彬、兰鹏飞、洪伟毅、廖 青、杨振宇、陆培祥 2009 物理学报58 4908]

    [4]

    Liao Q, Lu P X, Lan P F, Cao W, Li Y H 2008 Phys. Rev. A 77 013408

    [5]

    Paulus G G, Lindner F, Walther H, Baltuska A, Goulielmakis E, Lezius M, Krausz F 2003 Phys. Rev. Lett. 91 253004

    [6]

    Lein M, Gross E K U, Engel V 2000 Phys. Rev. Lett. 85 4707

    [7]

    Saugout S, Cornaggia C 2006 Phys. Rev. A 73 041406(R)

    [8]

    Zhou Y M, Liao Q, Zhang Q B, Hong W Y, Lu P X 2010 Opt. Express 18 632

    [9]

    L’Huillier A, Lompre L A, Mainfray G, Manus C 1983 Phys. Rev. A 27 2503

    [10]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227

    [11]

    Liu X, Rottke H, Eremina E, Sandner W, Goulielmakis E, Keeffe K O, Lezius M, Krausz F, Lindner F, Schatzel M G, Paulus G G, Walther H 2004 Phys. Rev. Lett. 93 263001

    [12]

    Liao Q, Lu P X, Zhang Q B, Yang Z Y, Wang X B 2008 Opt. Express 16 17070

    [13]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [14]

    Zuo T, Bandrauk A D 1996 Phys. Rev. A 52 R2511

    [15]

    Saugout S 2008 Phys. Rev. A 77 023404

    [16]

    Gibson G N, Li M, Guo C, Neira J 1997 Phys. Rev. Lett. 79 2022

    [17]

    Trump C, Rottke H, Wittmann M, Korn G, Sandner W, Lein M, Engel V 2000 Phys. Rev. A 62 063402

    [18]

    Yu H, Zuo T, Bandrauk A D 1996 Phys. Rev. A 54 3290

    [19]

    Saenz A 2000 Phys. Rev. A 61 051402

    [20]

    Alnaser A S, Tong X M, Osipov T, Voss S, Maharjan C M, Ranitovic P, Ulrich B, Shan B, Chang Z, Lin C D, Cocke C L 2004 Phys. Rev. Lett.93 183202

    [21]

    Tong A H, Liao Q, Zhou Y M, Lu P X 2010 Opt. Express 18 9064

    [22]

    Codling K, Frasinski L J, Hatherly P A 1989 J. Phys. B 22 L321

    [23]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008

    [24]

    Haan S L, Van Dyke J S, Smith Z S 2008 Phys. Rev. Lett. 101 113001

    [25]

    Liao Q, Lu P X 2009 Opt. Express 17 15550

    [26]

    Zhou Y M, Liao Q, Lu P X 2009 Phys. Rev. A 80 023412

    [27]

    Zhou Y M, Liao Q, Lan P F, Lu P X 2008 Chin.Phys.Lett. 25 3950

    [28]

    Tang Q B, Zhang D L, Yu B H, Chen D 2010 Acta Phys. Sin. 59 7775 (in Chinese) [汤清彬、张东玲、余本海、陈 东 2010 物理学报59 7775]

    [29]

    Nguyen-Dang T T, Chteauneuf F, Manoli S 1997 Phys. Rev. A 56 2142

    [30]

    Staudte A, Ruiz C, Schöffler M, Schössler S, Zeidler D, Weber Th, Meckel M, Villeneuve D M, Corkum P B, Becker A, Dörner R 2007 Phys. Rev. Lett. 99 263002

    [31]

    Weber Th, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Dörner R 2000 Nature 405 658

    [32]

    Feuerstein B, Moshammer R, Fischer D, Dorn A,Schröter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Höhr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Sandner W 2001 Phys. Rev. Lett. 87 043003

  • [1] 李卫艳, 刘娜, 王赏. 拉伸到大核间距的分子离子谐波辐射谱上复杂干涉结构的物理起源. 物理学报, 2023, 72(8): 083101. doi: 10.7498/aps.72.20222410
    [2] 廖健颖, 贺佟佟, 苏杰, 刘子超, 李盈傧, 余本海, 黄诚. 椭偏激光场中原子次序双电离的离子动量分布. 物理学报, 2023, 72(19): 193202. doi: 10.7498/aps.72.20230683
    [3] 李盈傧, 张可, 陈红梅, 康帅杰, 李整法, 程建国, 吴银梦, 翟春洋, 汤清彬, 许景焜, 余本海. 空间非均匀激光场驱动的原子非次序双电离. 物理学报, 2023, 72(16): 163201. doi: 10.7498/aps.72.20230548
    [4] 马堃, 朱林繁, 颉录有. Ar原子和K+离子序列双光双电离光电子角分布的非偶极效应. 物理学报, 2022, 71(6): 063201. doi: 10.7498/aps.71.20211905
    [5] 苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚. 反旋双色椭偏场中Ar非次序双电离电子关联的强度依赖. 物理学报, 2022, 71(19): 193201. doi: 10.7498/aps.71.20221044
    [6] 曾雪, 苏杰, 黄雪飞, 庞惠玲, 黄诚. 同向旋转双色圆偏场中非次序双电离的频率比依赖. 物理学报, 2021, 70(24): 243201. doi: 10.7498/aps.70.20211112
    [7] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖. 物理学报, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [8] 俞祖卿, 杨魏吉, 何峰. H2+在强激光脉冲作用下的电离率和原子核间距的关系. 物理学报, 2016, 65(20): 204202. doi: 10.7498/aps.65.204202
    [9] 黄诚, 钟明敏, 吴正茂. 低强度周期量级脉冲驱动排列分子的非次序双电离. 物理学报, 2016, 65(8): 083301. doi: 10.7498/aps.65.083301
    [10] 童爱红, 冯国强. 分子双电离对激光偏振性的依赖关系. 物理学报, 2014, 63(2): 023303. doi: 10.7498/aps.63.023303
    [11] 辛国国, 赵清, 刘杰. 非序列双电离向饱和区过渡的电子最大关联度. 物理学报, 2012, 61(13): 133201. doi: 10.7498/aps.61.133201
    [12] 童爱红, 冯国强, 邓永菊. 氦原子非次序双电离对正交双色场强度比的依赖关系. 物理学报, 2012, 61(9): 093303. doi: 10.7498/aps.61.093303
    [13] 余本海, 李盈傧. 椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖. 物理学报, 2012, 61(23): 233202. doi: 10.7498/aps.61.233202
    [14] 余本海, 李盈傧, 汤清彬. 椭圆偏振激光脉冲驱动的氩原子非次序双电离. 物理学报, 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [15] 张东玲, 汤清彬, 余本海, 陈东. 碰撞阈值下氩原子非次序双电离. 物理学报, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [16] 魏雅娜, 杨世平. 分子核间距对非时序双电离的影响. 物理学报, 2010, 59(10): 7298-7305. doi: 10.7498/aps.59.7298
    [17] 汤清彬, 张东玲, 余本海, 陈东. 周期量级激光脉冲驱动下非次序双电离的三维经典系综模拟. 物理学报, 2010, 59(11): 7775-7781. doi: 10.7498/aps.59.7775
    [18] 贾 飞, 徐瑚珊, 黄天衡, 袁小华, 张宏斌, 李君清, W.Scheid. 基于双核模型对准裂变产物质量分布的研究. 物理学报, 2007, 56(3): 1347-1352. doi: 10.7498/aps.56.1347
    [19] 缪竞威, 师勉恭, 杨百方, 唐阿友, N.Cue. 4HeH+核间距的实验测定. 物理学报, 2000, 49(6): 1058-1063. doi: 10.7498/aps.49.1058
    [20] 杨立铭, 刘汉昭. 原子核内轨道角动量分布与核密度的进一步探讨. 物理学报, 1955, 11(6): 439-452. doi: 10.7498/aps.11.439
计量
  • 文章访问数:  7743
  • PDF下载量:  890
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-28
  • 修回日期:  2010-06-25
  • 刊出日期:  2011-02-05

/

返回文章
返回