搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ar原子和K+离子序列双光双电离光电子角分布的非偶极效应

马堃 朱林繁 颉录有

引用本文:
Citation:

Ar原子和K+离子序列双光双电离光电子角分布的非偶极效应

马堃, 朱林繁, 颉录有

Non-dipole effects on angular distribution of photoelectrons in sequential two-photon double ionization of Ar atom and K+ ion

Ma Kun, Zhu Lin-Fan, Xie Lu-You
PDF
HTML
导出引用
  • 基于多组态Dirc-Fock方法和密度矩阵理论, 给出了原子序列双光双电离光电子角分布的计算表达式, 开发了相应的计算程序. 利用该程序计算了Ar原子和K+离子np (n = 2, 3)壳层的光电离截面、电偶极和非偶极角各向异性参数, 进一步给出了光电子的角分布情况. 结果表明: 在序列双光双电离中两次光电离过程相互影响, 两次光电离的截面以及各向异性参数类似; 在电离阈值附近, 3p壳层和2p壳层光电离截面以及各向异性参数展现出较大的差异, 在远离阈值时, 3p和2p壳层的截面和角各向异性参数变化行为类似; 在光电离截面的Cooper极小能量位置, 电偶极的贡献被压制, 凸显出非偶极效应的贡献. 非偶极效应导致光电子相对于入射光方向出现前向-后向不对称分布.
    Owing to the development of XUV and X ray of the free-electron lasers, the photoelectron angular distribution in the sequential two-photon double ionization has received increasing attention of theorists and experimentalists, because it provides the valuable information about the electronic structure of atom or molecule systems and allows the obtaining of additional information about mechanisms and pathways of the two-photon double ionization. In this paper, the expression of the sequential two-photon double ionization process of the photoelectron angular distributions, including the non-dipole effects, is obtained based on the multi-configuration Dirac-Fock method and the density matrix theory, and the corresponding calculation code is also developed. Based on the code, the sequential two-photon double ionization process of the 3p and 2p shells of Ar atom and K+ ion are studied, in which, the dipole and the non-dipole parameters of photoelectron angular distribution are investigated systematically. It is found that the angular distributions of the first- and second-step electrons in sequential two-photon double ionization are similar and the two photoionization processes affect each other. Near the ionization threshold, the photoionization cross-sections and anisotropy parameters for the 3p shell and the 2p shell show a large difference. While away from the threshold, the cross-section and angular anisotropy parameters of the 3p and 2p shells show similar behaviors. At the position of Cooper minimum of the photoionization cross section, the contribution of the electric dipole is suppressed, and the non-dipole effect is obvious. The non-dipole effect leads to a forward-backward asymmetric distribution of photoelectrons relative to the direction of incident light. The results of this paper will be helpful in studying the nonlinear processes of photon and matter interaction in the XUV range.
      通信作者: 马堃, makun0602@163.com
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0402300)、国家自然科学基金(批准号: 11804112, 12064041)、安徽省自然科学基金(批准号: 1808085QA22)、安徽省高校自然科学重点研究项目(批准号: KJ2019A0610)和安徽省高校优秀拔尖人才培育项目(批准号: gxgnfx2021146)资助的课题.
      Corresponding author: Ma Kun, makun0602@163.com
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0402300), the National Natural Science Foundation of China (Grant Nos. 11804112, 12064041), the Natural Science Foundation of Anhui Province, China (Grant No. 1808085QA22), the Natural Science Foundation of Higher Education Institutions of Anhui Province, China (Grant No. KJ2019A0610), and the Excellent Top Talent Cultivation Project of Higher Education Institutions of Anhui Province, China (Grant No. gxgnfx2021146).
    [1]

    Böhme D K 2011 Phys. Chem. Chem. Phys. 13 18253Google Scholar

    [2]

    Thissen R, Witasse O, Dutuit O, et al. 2011 Phys. Chem. Chem. Phys. 13 18264Google Scholar

    [3]

    Gillaspy J D, Pomeroy J M, Perrella A C, et al. 2007 J. Phys. Conf. Ser. 58 451Google Scholar

    [4]

    Ott C, Kaldun A, Raith P, et al. 2013 Science 340 716Google Scholar

    [5]

    Braune M, Reinköster A, Viefhaus J, et al. 2007 XXV Int. Conf. on Photonic, Electronic and Atomic Collisions (ICPEAC) Freiburg, Germany, July 25–31, 2007 Fr034

    [6]

    Moshammer R, Jiang Y H, Foucar L, et al. 2007 Phys. Rev. Lett. 98 203001Google Scholar

    [7]

    Rudenko A, Foucar L, Kurka M, et al. 2008 Phys. Rev. Lett. 101 073003Google Scholar

    [8]

    Kurka M, Rudenko A, Foucar L 2009 J. Phys. B 42 141002Google Scholar

    [9]

    Augustin S, Schulz M, Schmid G, et al. 2018 Phys. Rev. A 98 033408Google Scholar

    [10]

    Braune M, Hartmann G, Ilchen M, et al. 2015 J. Mod. Opt. 63 1047422Google Scholar

    [11]

    Fukuzawa H, Gryzlova E V, Motomura K, et al. 2010 J. Phys. B 43 111001Google Scholar

    [12]

    Gryzlova E V, Ma Ri, Fukuzawa H, et al. 2011 Phys. Rev. A 84 063405Google Scholar

    [13]

    Ilchen M G, Hartmann G, Gryzlova E V 2018 Nat. Commun. 9 4659Google Scholar

    [14]

    Carpeggiani P A, Gryzlova E V, Reduzzi M 2019 Nat. Phys. 15 170Google Scholar

    [15]

    Kheifets A S 2007 J. Phys. B 40 F313Google Scholar

    [16]

    Fritzsche S, Grum-Grzhimailo A N, Gryzlova E V, Kabachnik N M 2008 J. Phys. B 41 165601Google Scholar

    [17]

    Gryzlova E V, Grum-Grzhimailo A N, Fritzsche S, Kabachnik N M 2010 J. Phys. B 43 225602Google Scholar

    [18]

    Krӓssig B, Jung M, Gemmell D S, Kanter E P, LeBrun T, Southworth S H, Young L 1995 Phys. Rev. Lett. 75 4736Google Scholar

    [19]

    Jung M, Krӓssig B, Gemmell D S, Kanter E P, LeBrun T, Southworth S H, Young L 1996 Phys. Rev. A 54 2127Google Scholar

    [20]

    Hemmers O, Fisher G, Glans P, Hansen D L, Wang H, Whitfield S B, Wehlitz R, Levin J C, Sellin I A, Perera R C C, Dias E W B, Chakraborty H S, Deshmukh P C, Manson S T, Lindle D W 1997 J. Phys. B 30 L727Google Scholar

    [21]

    Holste K, Borovik A A, Buhr T, Ricz S, Kövér Á, Bernhardt D, Schippers S, Varga D, Müller A 2014 J. Phys. Confer. Ser. 488 022041Google Scholar

    [22]

    马堃, 颉录有, 张登红, 蒋军, 董晨钟 2016 物理学报 65 083201Google Scholar

    Ma K, Xie L Y, Zhang D H, Jiang J, Dong C Z 2016 Acta Phys. Sin. 65 083201Google Scholar

    [23]

    Gryzlova E V, Grum-Grzhimailo A N, Staroselskaya E I 2015 J. Electron. Spectrosc. Relat. Phenom. 15 277Google Scholar

    [24]

    Grum-Grzhimailo A N, Gryzlova E V, Fritzsche S 2016 J. Mod. Opt. 63 334Google Scholar

    [25]

    马堃, 颉录有, 董晨钟 2020 物理学报 69 053201Google Scholar

    Ma K, Xie L Y, Dong C Z 2020 Acta Phys. Sin. 69 053201Google Scholar

    [26]

    Wang M X, Chen S G, Liang H, Peng L Y 2020 Chin. Phys. B 29 013302Google Scholar

    [27]

    Kiselev M D, Carpeggiani P A, Gryzlova E V, et al. 2020 J. Phys. B 53 244006Google Scholar

    [28]

    Varvarezos L, Düsterer S, Kiselev M D, et al. 2021 Phys. Rev. A 103 022832Google Scholar

    [29]

    Fritzsche S 2012 Comput. Phys. Commun. 183 1525Google Scholar

    [30]

    Jönsson P, Gaigalas G, Bieroń J, et al. 2013 Comput. Phys. Commun. 184 2197Google Scholar

  • 图 1  Ar原子和K+离子np (n = 2, 3)壳层第一次和第二次光电离截面(1 b = 10–28 m2)

    Fig. 1.  The first and second photoionization cross section of the np (n = 2, 3) shell in Ar atom and K+ ion.

    图 2  Ar原子和K+离子np (n = 2, 3)壳层序列双光双电离中第1个光电子的电偶极角各向异性参数$ \beta _2^{(1)} $

    Fig. 2.  Asymmetry parameter of electric dipole $ \beta _2^{(1)} $ for the first photoelectron angular distribution in 2PDI of the Ar and K+ np (n = 2, 3) shell as a function of the photon energy.

    图 3  Ar原子和K+离子np (n = 2, 3)壳层序列双光双电离中第1个光电子的电偶极角各向异性参数$ \beta _4^{(1)} $

    Fig. 3.  Asymmetry parameter of electric dipole $ \beta _4^{(1)} $ for the first photoelectron angular distribution in 2PDI of the Ar and K+ np (n = 2, 3) shell as a function of the photon energy.

    图 4  Ar原子和K+离子np (n = 2, 3)壳层2PDI中第1个光电子的一级非偶极各向异性参数$ {\delta ^{(1)}} $

    Fig. 4.  Asymmetry parameter of non-dipole $ {\delta ^{(1)}} $ for the first photoelectron angular distribution in 2PDI of the Ar and K+ np (n = 2, 3) shell as a function of the photon energy.

    图 5  Ar原子和K+离子np (n = 2, 3)壳层2PDI中第1个光电子的一级非偶极各向异性参数$ \gamma _2^{(1)} $

    Fig. 5.  Asymmetry parameter of non-dipole $ \gamma _2^{(1)} $ for the first photoelectron angular distribution in 2PDI of the Ar and K+ np (n = 2, 3) shell as a function of the photon energy.

    图 6  Ar原子和K+离子np (n = 2, 3)壳层2PDI中第1个光电子的一级非偶极各向异性参数$ \gamma _4^{(1)} $

    Fig. 6.  Asymmetry parameter of non-dipole $ \gamma _4^{(1)} $ for the first photoelectron angular distribution in 2PDI of the Ar and K+ np (n = 2, 3) shell as a function of the photon energy.

    图 7  Ar原子3p3/2壳层2PDI过程第1个光电子角分布

    Fig. 7.  The first photoelectron angular distribution in 2PDI of Ar atom 3p3/2 shell.

    图 8  K+离子3p3/2壳层2PDI过程第1个光电子角分布

    Fig. 8.  The first photoelectron angular distribution in 2PDI of the K+ ion 3p3/2 shell.

  • [1]

    Böhme D K 2011 Phys. Chem. Chem. Phys. 13 18253Google Scholar

    [2]

    Thissen R, Witasse O, Dutuit O, et al. 2011 Phys. Chem. Chem. Phys. 13 18264Google Scholar

    [3]

    Gillaspy J D, Pomeroy J M, Perrella A C, et al. 2007 J. Phys. Conf. Ser. 58 451Google Scholar

    [4]

    Ott C, Kaldun A, Raith P, et al. 2013 Science 340 716Google Scholar

    [5]

    Braune M, Reinköster A, Viefhaus J, et al. 2007 XXV Int. Conf. on Photonic, Electronic and Atomic Collisions (ICPEAC) Freiburg, Germany, July 25–31, 2007 Fr034

    [6]

    Moshammer R, Jiang Y H, Foucar L, et al. 2007 Phys. Rev. Lett. 98 203001Google Scholar

    [7]

    Rudenko A, Foucar L, Kurka M, et al. 2008 Phys. Rev. Lett. 101 073003Google Scholar

    [8]

    Kurka M, Rudenko A, Foucar L 2009 J. Phys. B 42 141002Google Scholar

    [9]

    Augustin S, Schulz M, Schmid G, et al. 2018 Phys. Rev. A 98 033408Google Scholar

    [10]

    Braune M, Hartmann G, Ilchen M, et al. 2015 J. Mod. Opt. 63 1047422Google Scholar

    [11]

    Fukuzawa H, Gryzlova E V, Motomura K, et al. 2010 J. Phys. B 43 111001Google Scholar

    [12]

    Gryzlova E V, Ma Ri, Fukuzawa H, et al. 2011 Phys. Rev. A 84 063405Google Scholar

    [13]

    Ilchen M G, Hartmann G, Gryzlova E V 2018 Nat. Commun. 9 4659Google Scholar

    [14]

    Carpeggiani P A, Gryzlova E V, Reduzzi M 2019 Nat. Phys. 15 170Google Scholar

    [15]

    Kheifets A S 2007 J. Phys. B 40 F313Google Scholar

    [16]

    Fritzsche S, Grum-Grzhimailo A N, Gryzlova E V, Kabachnik N M 2008 J. Phys. B 41 165601Google Scholar

    [17]

    Gryzlova E V, Grum-Grzhimailo A N, Fritzsche S, Kabachnik N M 2010 J. Phys. B 43 225602Google Scholar

    [18]

    Krӓssig B, Jung M, Gemmell D S, Kanter E P, LeBrun T, Southworth S H, Young L 1995 Phys. Rev. Lett. 75 4736Google Scholar

    [19]

    Jung M, Krӓssig B, Gemmell D S, Kanter E P, LeBrun T, Southworth S H, Young L 1996 Phys. Rev. A 54 2127Google Scholar

    [20]

    Hemmers O, Fisher G, Glans P, Hansen D L, Wang H, Whitfield S B, Wehlitz R, Levin J C, Sellin I A, Perera R C C, Dias E W B, Chakraborty H S, Deshmukh P C, Manson S T, Lindle D W 1997 J. Phys. B 30 L727Google Scholar

    [21]

    Holste K, Borovik A A, Buhr T, Ricz S, Kövér Á, Bernhardt D, Schippers S, Varga D, Müller A 2014 J. Phys. Confer. Ser. 488 022041Google Scholar

    [22]

    马堃, 颉录有, 张登红, 蒋军, 董晨钟 2016 物理学报 65 083201Google Scholar

    Ma K, Xie L Y, Zhang D H, Jiang J, Dong C Z 2016 Acta Phys. Sin. 65 083201Google Scholar

    [23]

    Gryzlova E V, Grum-Grzhimailo A N, Staroselskaya E I 2015 J. Electron. Spectrosc. Relat. Phenom. 15 277Google Scholar

    [24]

    Grum-Grzhimailo A N, Gryzlova E V, Fritzsche S 2016 J. Mod. Opt. 63 334Google Scholar

    [25]

    马堃, 颉录有, 董晨钟 2020 物理学报 69 053201Google Scholar

    Ma K, Xie L Y, Dong C Z 2020 Acta Phys. Sin. 69 053201Google Scholar

    [26]

    Wang M X, Chen S G, Liang H, Peng L Y 2020 Chin. Phys. B 29 013302Google Scholar

    [27]

    Kiselev M D, Carpeggiani P A, Gryzlova E V, et al. 2020 J. Phys. B 53 244006Google Scholar

    [28]

    Varvarezos L, Düsterer S, Kiselev M D, et al. 2021 Phys. Rev. A 103 022832Google Scholar

    [29]

    Fritzsche S 2012 Comput. Phys. Commun. 183 1525Google Scholar

    [30]

    Jönsson P, Gaigalas G, Bieroń J, et al. 2013 Comput. Phys. Commun. 184 2197Google Scholar

  • [1] 葛振杰, 苏旭, 白丽华. 反旋双色椭圆偏振激光场中Ar原子的非序列双电离. 物理学报, 2024, 73(9): 093201. doi: 10.7498/aps.73.20231583
    [2] 赵婷, 宫毛毛, 张松斌. 氦原子贝塞尔涡旋光电离的理论研究. 物理学报, 2024, 73(24): 244201. doi: 10.7498/aps.73.20241378
    [3] 苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚. 反旋双色椭偏场中Ar非次序双电离电子关联的强度依赖. 物理学报, 2022, 71(19): 193201. doi: 10.7498/aps.71.20221044
    [4] 雷建廷, 余璇, 史国强, 闫顺成, 孙少华, 王全军, 丁宝卫, 马新文, 张少锋, 丁晶洁. 基于极紫外光的Ne, Xe原子电离. 物理学报, 2022, 71(14): 143201. doi: 10.7498/aps.71.20220341
    [5] 马堃, 颉录有, 董晨钟. Ar原子序列双光双电离产生光电子角分布的理论计算. 物理学报, 2020, 69(5): 053201. doi: 10.7498/aps.69.20191814
    [6] 马堃, 颉录有, 张登红, 蒋军, 董晨钟. 类钠离子光电子角分布的非偶极效应. 物理学报, 2017, 66(4): 043201. doi: 10.7498/aps.66.043201
    [7] 马堃, 颉录有, 张登红, 董晨钟, 屈一至. 氖原子光电子角分布的理论计算. 物理学报, 2016, 65(8): 083201. doi: 10.7498/aps.65.083201
    [8] 王金霞, 师应龙, 张登红, 颉录有, 董晨钟. 类锂离子双电子复合过程中辐射光子角分布和极化特性的理论研究. 物理学报, 2013, 62(23): 233401. doi: 10.7498/aps.62.233401
    [9] 辛国国, 赵清, 刘杰. 非序列双电离向饱和区过渡的电子最大关联度. 物理学报, 2012, 61(13): 133201. doi: 10.7498/aps.61.133201
    [10] 辛国国, 叶地发, 赵清, 刘杰. 原子非序列双电离的多次返回碰撞电离机理分析. 物理学报, 2011, 60(9): 093204. doi: 10.7498/aps.60.093204
    [11] 李洪云, 王兵兵, 蒋红兵, 陈 京, 李晓峰, 刘 杰, 龚旗煌, 傅盘铭. 静电场对强激光场非序列双电子电离的影响. 物理学报, 2008, 57(1): 124-131. doi: 10.7498/aps.57.124
    [12] 郑颖辉, 曾志男, 李儒新, 徐至展. 极紫外阿秒脉冲在高次谐波产生过程中引起的非偶极效应. 物理学报, 2007, 56(4): 2243-2249. doi: 10.7498/aps.56.2243
    [13] 李 涵, 唐新峰, 赵文俞, 张清杰. 双原子填充式skutterudite化合物的结构及X射线光电子能谱分析. 物理学报, 2006, 55(12): 6506-6510. doi: 10.7498/aps.55.6506
    [14] 郭立俊, Jan-Peter Wüstenberg, Andreyev Oleksiy, Michael Bauer, Martin Aeschlimann. 利用飞秒双光子光电子发射研究GaAs(100)的自旋动力学过程. 物理学报, 2005, 54(7): 3200-3205. doi: 10.7498/aps.54.3200
    [15] 詹佑邦. 非共振双光子Jaynes-Cummings模型中原子的偶极压缩. 物理学报, 1994, 43(6): 895-903. doi: 10.7498/aps.43.895
    [16] 冯健, 高学彦. 强场自电离光电子谱中峰开关效应的破坏. 物理学报, 1993, 42(6): 886-892. doi: 10.7498/aps.42.886
    [17] 屈卫星, 徐至展, 张文琦. 二阶离化过程对双光子自电离光电子能谱的影响. 物理学报, 1991, 40(5): 686-692. doi: 10.7498/aps.40.686
    [18] 陈宝振. 氢原子阈上电离角分布. 物理学报, 1990, 39(1): 40-45. doi: 10.7498/aps.39.40
    [19] 姚关华, 徐至展. 光电子谱的峰开关效应. 物理学报, 1989, 38(5): 864-868. doi: 10.7498/aps.38.864
    [20] 吴全德. 光电子的初能量分布与角度分布. 物理学报, 1958, 14(2): 139-152. doi: 10.7498/aps.14.139
计量
  • 文章访问数:  5295
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-13
  • 修回日期:  2021-11-23
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-03-20

/

返回文章
返回