搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

室温超高真空环境原子尺度Au/Si(111)-(7×7)不定域吸附的局域接触势能差测量技术

王慧云 冯婕 王旭东 温阳 魏久焱 温焕飞 石云波 马宗敏 李艳君 刘俊

引用本文:
Citation:

室温超高真空环境原子尺度Au/Si(111)-(7×7)不定域吸附的局域接触势能差测量技术

王慧云, 冯婕, 王旭东, 温阳, 魏久焱, 温焕飞, 石云波, 马宗敏, 李艳君, 刘俊

Measurement of local contact potential difference of atomic scale Au/Si(111)-(7×7) delocalized adsorption state in room-temperature and ultra-high vacuum environment

Wang Hui-Yun, Feng Jie, Wang Xu-Dong, Wen Yang, Wei Jiu-Yan, Wen Huan-Fei, Shi Yun-Bo, Ma Zong-Min, Li Yan-Jun, Liu Jun
PDF
HTML
导出引用
  • 利用自制超高真空非接触调频开尔文探针力显微镜系统地研究了Au/Si(111)-(7×7)的结构和局域接触势能差. 虽然扫描隧道显微镜已被广泛应用于原子尺度金属吸附半导体表面的研究, 但仅局限在观测金属和半导体表面. 开尔文探针力显微镜允许在原子尺度利用局域接触势能差直接测量各类平整表面不同位置的电荷, 而成为更方便、更精确的电荷表征手段. 本文通过在室温下利用开尔文探针力显微镜对Au吸附Si(111)-(7×7)表面的形貌及局域接触势能差原子尺度测量, 同时建立相应的吸附模型和第一性原理计算, 得到了Au/Si(111)-(7×7)最佳吸附位置的差分电荷密度分布图, 并给出了Au在Si(111)-(7×7)表面的最佳吸附位置不定域移动的局域接触势能差关系, 分析了Au原子在吸附过程中与Si表面之间电荷转移的机理. 实验结果表明, Au/Si(111)-(7×7)吸附表面的局域接触势能差测量可以进行有效的Au与Si原子识别. 本研究对推动表面电荷精密测量的发展具有重要意义.
    The structural properties and local contact potential difference of Au on Si(111)-(7×7) surface are studied by the homemade ultra-high vacuum non-contact Kelvin probe force microscope. Although scanning tunneling microscopy has been widely used to study the metal- adsorbed semiconductor surfaces on an atomic scale, the tunnel current measured by scanning tunneling microscopy is easy to lead the charge states to accidentally switch in the measurement process, and it is limited only to the observation of metal and semiconductor surfaces. Kelvin probe force microscope allows us to directly measure the charges at different positions of various flat surfaces by local contact potential difference on an atomic scale, which has become a more convenient and accurate means of charge characterization. In this paper, the topography and local contact potential difference of Au adsorbed Si(111)-(7×7) surface are measured on an atomic scale by Kelvin probe force microscope at room temperature, and the corresponding adsorption model and first principle calculation are established. The differential charge density distribution of the stable adsorption position of Au/Si(111)-(7×7) is obtained, and the local contact potential energy difference relationship of the stable adsorption position of Au on Si surface is given, The mechanism of charge transfer between Au atom and Si(111)-(7×7) surface during adsorption is analyzed. The experimental results show that at room temperature, single Au atom will form triangular delocalized adsorption state in the half unit cell of Si(111)-(7×7). The delocalized adsorption state is due to the fact that the moving speed of a single Au atom in the HUC is faster than the scanning speed of Kelvin probe force microscope, and the local contact potential difference measurement of Au/Si(111)-(7×7) adsorbed surface can effectively identify Au and Si atoms. Obviously, this research is of great significance in promoting the development of surface charge precision measurement, and is expected to provide some insights into the charge properties of metal adsorbed semiconductor surfaces.
      通信作者: 马宗敏, mzmncit@163.com ; 刘俊, liuj@nuc.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFE0130200, 2018YFF01012502)、国家自然科学基金(批准号: 51727808, 61874100, 61503346, 51635011)、山西省“1331工程”重点学科建设项目(批准号: 1331KSC)、山西省自然科学基金(批准号: 201701D121080, 201803D421037, 201901D211253)、山西省回国留学人员科研资助项目(批准号: 2021-115)和2019 年山西省高等学校创新人才支持计划资助的课题.
      Corresponding author: Ma Zong-Min, mzmncit@163.com ; Liu Jun, liuj@nuc.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFE0130200, 2018YFF01012502), the National Natural Science Foundation of China (Grant Nos. 51727808, 61874100, 61503346, 51635011), the Shanxi Provincial “1331 Project” Key Subjects Construction, China (Grant No. 1331KSC), the Natural Science Foundation of Shanxi Province, China (Grant Nos. 201701D121080, 201803D421037, 201901D211253), the Shanxi Scholarship Council of China (Grant No. 2021-115), and the 2019 Support Plan for Innovative Talents of Colleges and Universities in Shanxi Province, China.
    [1]

    Zou S R, Sugawara Y, Li Y J 2021 J. Phys. Chem. C 125 446Google Scholar

    [2]

    Wang H W, Lu J L 2020 Chin. J. Chem. 38 1422Google Scholar

    [3]

    Qu B, Hu J H, Li H, Li W J, Huang M L, Wu Q H 2015 Surf. Interface Anal. 47 926Google Scholar

    [4]

    Sonnet P, Stauffer L, Minot C 1998 Surf. Sci. 402 751Google Scholar

    [5]

    Li Y J, Takeuchi O, Don N. Futaba, Oigawa H, Miyake K, Shigekawa H 2003 Phys. Rev. B 68 033301Google Scholar

    [6]

    Chen G, Xiao X D, Kawazoe Y, Gong X G, Chan C T 2009 Phys. Rev. B 79 115301Google Scholar

    [7]

    Zhang C, Chen G, Wang K D, Yang H W, Su T, Chan C T, Loy M M T, Xiao X D 2005 Phys. Rev. Lett. 94 176104Google Scholar

    [8]

    Zhang L, Jeon Y J, Shim H, Lee G 2012 J. Vac. Sci. Technol. , A 30 61406Google Scholar

    [9]

    李彦, 郑琦, 常霄, 黄立, 林晓, 程志海, 高鸿钧 2021 物理学报 70 136802Google Scholar

    Li Y, Zheng Q, Chang X, Huang L, Lin X, Cheng Z H, Gao H J 2021 Acta Phys. Sin. 70 136802Google Scholar

    [10]

    Melitz W, Shen J, Kummel A C, Lee S 2011 Surf. Sci. Rep. 66 1Google Scholar

    [11]

    Wandelt K 1997 Appl. Surf. Sci. 111 1Google Scholar

    [12]

    Castañeda-Uribe O A, Avila A, Reifenberger R, and Raman A 2015 ACS Nano. 9 2938Google Scholar

    [13]

    Zou S R, Yokoyama H, Sugawara Y, Li Y J 2020 J. Phys. Chem. C 124 21641Google Scholar

    [14]

    Adachi Y, Wen H F, Zhang Q Z, Miyazaki M, Sugawaraa Y, Li Y J 2020 Nanoscale Adv. 2 2371Google Scholar

    [15]

    温焕飞, 菅原康弘, 李艳君 2020 物理学报 69 210701Google Scholar

    Wen H F, Sugawara Y, Li Y J 2020 Acta Phys. Sin. 69 210701Google Scholar

    [16]

    Miyazaki M, Wen H F, Zhang Q Z, Adachi Y, Brndiar J, Štich Ivan, Li Y J, Sugawara Y 2019 Beilstein J. Nanotechnol. 10 1228Google Scholar

    [17]

    Faliya K, Kliem H, Dias C J 2017 IEEE Trans Dielectr. Electr. Insul. 24 1913Google Scholar

    [18]

    Gross L, Mohn F, Liljeroth P, Repp J, Giessibl F J, Meyer G 2009 Science 324 1428Google Scholar

    [19]

    Liu Q, Fu Q, Shao X J, Ma X H, Wu X F, Wang K D, Xiao X D 2017 Appl. Surf. Sci. 401 225Google Scholar

    [20]

    Sadewasser S, Jelinek P, Fang C K, Custance O, Yamada Y, Sugimoto Y, Abe M, Morita S 2009 Phys. Rev. Lett. 103 266103Google Scholar

    [21]

    Kinoshita Y, Naitoh Y, Li Y J, Sugawara Y 2011 Rev. Sci. Instrum. 82 113707Google Scholar

    [22]

    Li Y J, Wen H F, Zhang Q, Adachi Y, Arima E, Kinoshita Y, Nomura H, Ma Z, Kou L, Tsukuda Y, Naitoh Y, Sugawara Y, Xu R, Cheng Z H 2018 Ultramicroscopy 191 51Google Scholar

    [23]

    Cho K, Kaxiras E 1998 Surf. Sci. 396 L261Google Scholar

    [24]

    Zhou Y H, Wu Q H, Li S P, Kang J Y 2007 Surf. Rev. Lett. 14 657Google Scholar

  • 图 1  样品和AFM探针之间电子能级的三种示意图 (a) 尖端和样品分开距离d没有电接触; (b) 尖端和样品电接触; (c) 施加外部偏压$ {V}_{\mathrm{D}\mathrm{C}} $于尖端和样品之间以抵消接触区域的静电力CPD, $ {E}_{\mathrm{V}} $是真空能级, $ {E}_{\mathrm{f}\mathrm{s}} $$ {E}_{\mathrm{f}\mathrm{t}} $分别为样品和尖端的费米能级

    Fig. 1.  Three schematic diagrams of electron energy levels between sample and AFM probe: (a) No electrical contact between tip and sample separation distance d; (b) electrical contact between tip and sample; (c) apply an external bias $ {V}_{\mathrm{D}\mathrm{C}} $ to counteract the electrostatic force CPD in the contact area between the tip and the sample. $ {E}_{\mathrm{V}} $ is the vacuum level, $ {E}_{\mathrm{f}\mathrm{s}} $ and $ {E}_{\mathrm{f}\mathrm{t}} $ is the Fermi level of the sample and the tip, respectively.

    图 2  FM-KPFM原理图

    Fig. 2.  Schematic diagram of FM-KPFM.

    图 3  Si(111)-(7×7)模型图

    Fig. 3.  Model figure of Si(111)-(7×7).

    图 4  吸附在Si(111)-(7×7)表面Au原子的AFM图像  (a) 成像尺寸为40 nm×40 nm, 设定值$ \Delta f $= 25 Hz; (b) 成像尺寸为10 nm×10 nm, 设定值$ \Delta f $= 33 Hz; (c) 成像尺寸为5 nm×5 nm, 设定值$ \Delta f $ = 45 Hz. 用探针分别观察到Si(111)-(7×7)表面上的Au原子是较亮的突起. 成像参数为悬臂的共振频率f0 = 160.288 kHz, 振荡幅值A = 7 nm, 悬臂的弹性系数k = 45 N/m, 在样品上施加的直流偏置电压VBias = 120 mV, 恒定频率模式

    Fig. 4.  AFM images of Au atom adsorbed on the surface of Si (111)-(7×7), respectively: (a) Imaging size of 40 nm×40 nm, the set point of $ \Delta f $ = 25 Hz; (b) imaging size of 10 nm×10 nm, the set point of $ \Delta f $ = 33 Hz; (c) imaging size of 5 nm×5 nm, the set point of $ \Delta f $ = 25 Hz. The Au atom on the Si (111)-(7×7) surface are bright protrusions observed by probes. Imaging parameters: the resonance frequency of the cantilever is ${f}_{0}=160.288\;\mathrm{k}\mathrm{H}\mathrm{z}$, the oscillation amplitude is A = 7 nm, the elasticity coefficient of the cantilever is k = 45 N/m, the DC bias voltage applied on the sample is $ {V}_{\mathrm{B}\mathrm{i}\mathrm{a}\mathrm{s}} $ = 120 mV, constant frequency mode.

    图 5  (a) 吸附在Si(111)-(7×7)表面的Au原子的AFM图像; (c) Au原子吸附在Si(111)-(7×7)表面的LCPD图像. 成像参数: 悬臂的共振频率${f}_{0}=165.348\;\mathrm{k}\mathrm{H}\mathrm{z}$, 振荡幅值A = 7 nm, 悬臂的弹性系数为k = 45 N/m, 恒定频率模式, 直流偏置电压$ {V}_{\mathrm{B}\mathrm{i}\mathrm{a}\mathrm{s}} $= 78 mV, 设定值$ \Delta f $ = 43 Hz; KPFM控制器参数为$ {V}_{\mathrm{A}\mathrm{C}} $= 0.5 V, $ {f}_{\mathrm{A}\mathrm{C}} $= 0.5 kHz; (b), (d) 吸附的Au原子的AFM和LCPD谱线

    Fig. 5.  (a) AFM images of the Au atom adsorbed on the Si(111)-(7×7) surfaces; (c) LCPD images of the Au atom adsorbed on the Si (111)-(7×7) surfaces. Imaging parameters: resonance frequency ${f}_{0}=165.348\;\mathrm{k}\mathrm{H}\mathrm{z}$, oscillation amplitude A = 7 nm, elasticity coefficient k = 45 N/m, constant frequency mode, DC bias voltage$ {V}_{\mathrm{B}\mathrm{i}\mathrm{a}\mathrm{s}} $= 78 mV, the set point of $ \Delta f $ = 43 Hz; KPFM controller parameters are $ {V}_{\mathrm{A}\mathrm{C}} $ = 0.5 V, $ {f}_{\mathrm{A}\mathrm{C}} $= 0.5 kHz; (b), (d) the AFM and LCPD spectral lines of the adsorbed Au atom.

    图 6  (a) Si(111)-(7×7)的DAS单元原子结构示意图以及(b)标记所选盆地的对称吸附位点

    Fig. 6.  (a) Shematic atomic configuration of DAS unit cell of Si(111)-(7×7) and (b) symmetrical adsorption sites marking the selected basin.

    图 7  单个Au原子吸附Si(111)-(7×7)表面的三角形不定域吸附特征形成原理, 图中为一个菱形单元. 虚线圈表示Au在该吸附位点一直来回移动, 形成不定域吸附特征. 成像尺寸为5 nm × 3 nm

    Fig. 7.  Formation principle of adsorption characteristics about triangular delocalized adsorption of single Au atom adsorbed on Si surface, in the figure, a diamond unit is shown. The dotted line circle indicates that Au has been moving back and forth at this adsorption site, and forming the adsorption characteristic of delocalized adsorption. Imaging size: 5 nm × 3 nm.

    图 8  Au原子吸附在Si(111)-(7×7)不同位置的差分电荷密度分布 (a) Au原子吸附在Si顶戴原子位置, Au—SiA键长为2.3 Å; (b) Au原子吸附在Si剩余原子的位置, Au—SiR键长为2.29 Å; (c) Au原子吸附在Si(111)-(7×7)表面的高配位, Au—Si键长为2.51 Å. 图中红色部分表示该位置电荷减少, 蓝色部分表示电荷的增加

    Fig. 8.  Differential charge density distribution of Au atom adsorbed at different positions of Si(111)-(7×7), respectively: (a) Au atom adsorbed at the position of Si adatom, and the bond length of Au—SiA is 2.3 Å; (b) the position of Au atom adsorbed on the Si rest atom, and the bond length of Au—SiR is 2.29 Å; (c) the high coordination of Au atom adsorbed on the Si(111)-(7×7) surface, and the Au—Si bond length is 2.51 Å. In the figure, the red part indicates the decrease of charge at this position, and the blue part indicates the increase of charge.

    图 9  Au原子未吸附时与吸附在Si(111)-(7×7)最佳位置的差分电荷密度分布 (a) Au原子未吸附在Si表面原子位置; (b) Au原子吸附在Si(111)-(7×7)表面的高配位. 黑色虚线三角框表示一个菱形半单胞中的盆地区域. 图中红色部分表示该位置电荷减少, 蓝色部分表示电荷的增加

    Fig. 9.  Differential charge density distribution of Au atom not adsorbed and the best position adsorbed on Si(111)-(7×7): (a) The atomic position of Au atom not adsorbed on Si surface; (b) the high coordination of Au atom adsorbed on the surface of Si(111)-(7×7). The black dotted triangular box represents the basin area in a HUC. In the figure, the red part indicates the decrease of charge at this position, and the blue part indicates the increase of charge.

  • [1]

    Zou S R, Sugawara Y, Li Y J 2021 J. Phys. Chem. C 125 446Google Scholar

    [2]

    Wang H W, Lu J L 2020 Chin. J. Chem. 38 1422Google Scholar

    [3]

    Qu B, Hu J H, Li H, Li W J, Huang M L, Wu Q H 2015 Surf. Interface Anal. 47 926Google Scholar

    [4]

    Sonnet P, Stauffer L, Minot C 1998 Surf. Sci. 402 751Google Scholar

    [5]

    Li Y J, Takeuchi O, Don N. Futaba, Oigawa H, Miyake K, Shigekawa H 2003 Phys. Rev. B 68 033301Google Scholar

    [6]

    Chen G, Xiao X D, Kawazoe Y, Gong X G, Chan C T 2009 Phys. Rev. B 79 115301Google Scholar

    [7]

    Zhang C, Chen G, Wang K D, Yang H W, Su T, Chan C T, Loy M M T, Xiao X D 2005 Phys. Rev. Lett. 94 176104Google Scholar

    [8]

    Zhang L, Jeon Y J, Shim H, Lee G 2012 J. Vac. Sci. Technol. , A 30 61406Google Scholar

    [9]

    李彦, 郑琦, 常霄, 黄立, 林晓, 程志海, 高鸿钧 2021 物理学报 70 136802Google Scholar

    Li Y, Zheng Q, Chang X, Huang L, Lin X, Cheng Z H, Gao H J 2021 Acta Phys. Sin. 70 136802Google Scholar

    [10]

    Melitz W, Shen J, Kummel A C, Lee S 2011 Surf. Sci. Rep. 66 1Google Scholar

    [11]

    Wandelt K 1997 Appl. Surf. Sci. 111 1Google Scholar

    [12]

    Castañeda-Uribe O A, Avila A, Reifenberger R, and Raman A 2015 ACS Nano. 9 2938Google Scholar

    [13]

    Zou S R, Yokoyama H, Sugawara Y, Li Y J 2020 J. Phys. Chem. C 124 21641Google Scholar

    [14]

    Adachi Y, Wen H F, Zhang Q Z, Miyazaki M, Sugawaraa Y, Li Y J 2020 Nanoscale Adv. 2 2371Google Scholar

    [15]

    温焕飞, 菅原康弘, 李艳君 2020 物理学报 69 210701Google Scholar

    Wen H F, Sugawara Y, Li Y J 2020 Acta Phys. Sin. 69 210701Google Scholar

    [16]

    Miyazaki M, Wen H F, Zhang Q Z, Adachi Y, Brndiar J, Štich Ivan, Li Y J, Sugawara Y 2019 Beilstein J. Nanotechnol. 10 1228Google Scholar

    [17]

    Faliya K, Kliem H, Dias C J 2017 IEEE Trans Dielectr. Electr. Insul. 24 1913Google Scholar

    [18]

    Gross L, Mohn F, Liljeroth P, Repp J, Giessibl F J, Meyer G 2009 Science 324 1428Google Scholar

    [19]

    Liu Q, Fu Q, Shao X J, Ma X H, Wu X F, Wang K D, Xiao X D 2017 Appl. Surf. Sci. 401 225Google Scholar

    [20]

    Sadewasser S, Jelinek P, Fang C K, Custance O, Yamada Y, Sugimoto Y, Abe M, Morita S 2009 Phys. Rev. Lett. 103 266103Google Scholar

    [21]

    Kinoshita Y, Naitoh Y, Li Y J, Sugawara Y 2011 Rev. Sci. Instrum. 82 113707Google Scholar

    [22]

    Li Y J, Wen H F, Zhang Q, Adachi Y, Arima E, Kinoshita Y, Nomura H, Ma Z, Kou L, Tsukuda Y, Naitoh Y, Sugawara Y, Xu R, Cheng Z H 2018 Ultramicroscopy 191 51Google Scholar

    [23]

    Cho K, Kaxiras E 1998 Surf. Sci. 396 L261Google Scholar

    [24]

    Zhou Y H, Wu Q H, Li S P, Kang J Y 2007 Surf. Rev. Lett. 14 657Google Scholar

  • [1] 温恒迪, 刘跃, 甄良, 李洋, 徐成彦. MoS2/MoTe2垂直异质结的电荷传输及其调制. 物理学报, 2023, 72(3): 036102. doi: 10.7498/aps.72.20221768
    [2] 冯婕, 郭强, 舒鹏丽, 温阳, 温焕飞, 马宗敏, 李艳君, 刘俊, 伊戈尔·弗拉基米罗维奇·雅明斯基. 超高真空原子尺度Aux/Si(111)-(7×7)表面吸附的电荷分布测量. 物理学报, 2023, 72(11): 110701. doi: 10.7498/aps.72.20230051
    [3] 张玉响, 彭倚天, 郎浩杰. 基于原子力显微镜的石墨烯表面图案化摩擦调控. 物理学报, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [4] 温焕飞, 菅原康弘, 李艳君. 二氧化钛亚表面电荷对其表面点缺陷和吸附原子分布的影响. 物理学报, 2020, 69(21): 210701. doi: 10.7498/aps.69.20200773
    [5] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [6] 杨海艳, 王振宇, 李英姿, 张维然, 钱建强. 原子力显微镜探针悬臂几何结构变化对高次谐波信息增强的研究. 物理学报, 2013, 62(20): 200703. doi: 10.7498/aps.62.200703
    [7] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究. 物理学报, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [8] 欧谷平, 宋 珍, 桂文明, 张福甲. 原子力显微镜与x射线光电子能谱对LiBq4/ITO和LiBq4/CuPc/ITO的表面分析. 物理学报, 2005, 54(12): 5717-5722. doi: 10.7498/aps.54.5717
    [9] 王晓平, 刘磊, 胡海龙, 张琨. 原子力显微术轻敲模式中探针样品接触过程及相位衬度研究. 物理学报, 2004, 53(4): 1008-1014. doi: 10.7498/aps.53.1008
    [10] 张向军, 孟永钢, 温诗铸. 原子力显微镜探针耦合变形下的微观扫描力研究. 物理学报, 2004, 53(3): 728-733. doi: 10.7498/aps.53.728
    [11] 张永平, 闫隆, 解思深, 庞世谨, 高鸿钧. Si(111)-(7×7)表面上Ge量子点的自组织生长. 物理学报, 2002, 51(2): 296-299. doi: 10.7498/aps.51.296
    [12] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究. 物理学报, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [13] 晏浩, 赵学应, 赵汝光, 杨威生. 甘氨酸在Cu(111)表面吸附的扫描隧道显微镜研究. 物理学报, 2001, 50(10): 1964-1969. doi: 10.7498/aps.50.1964
    [14] 闫隆, 张永平, 彭毅萍, 庞世谨, 高鸿钧. Ge在Si(111)7×7表面的选择性吸附. 物理学报, 2001, 50(11): 2132-2136. doi: 10.7498/aps.50.2132
    [15] 李群祥, 杨金龙, 丁长庚, 汪克林, 李家明. STM针尖和外电场在Si(111)-7×7表面单原子操纵中的作用. 物理学报, 1999, 48(6): 1086-1094. doi: 10.7498/aps.48.1086
    [16] 王宇钢, 康一秀, 赵渭江, 颜莎, 严隽珏, 杨威生, 翟鹏济, 唐孝威. 扫描隧道显微镜观察石墨被Au离子轰击后的表面损伤(Ⅱ). 物理学报, 1997, 46(10): 1965-1971. doi: 10.7498/aps.46.1965
    [17] 白春礼, 郭仪. 弹道电子发射显微镜对Au/n-Si(100)界面势垒的探测. 物理学报, 1995, 44(1): 133-136. doi: 10.7498/aps.44.133
    [18] 蓝田, 徐飞岳. 用低能电子衍射研究Si(111)7×7表面的原子结构. 物理学报, 1989, 38(7): 1077-1085. doi: 10.7498/aps.38.1077
    [19] 朱福荣, 罗艳生, 戴道宣. 低温下水汽在Si(111)7×7表面上的化学吸附. 物理学报, 1989, 38(2): 296-300. doi: 10.7498/aps.38.296
    [20] 王向东, 胡际璜, 戴道宣. Si(111)7×7清洁表面的总电流谱. 物理学报, 1988, 37(11): 1888-1892. doi: 10.7498/aps.37.1888
计量
  • 文章访问数:  4072
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-06
  • 修回日期:  2022-01-29
  • 上网日期:  2022-02-23
  • 刊出日期:  2022-03-20

/

返回文章
返回