-
轻敲模式原子力显微镜高次谐波信号包含待测样品表面纳米力学特性等方面的信息, 但是传统原子力显微镜的高次谐波信号非常微弱. 里兹法证明在探针悬臂的特定位置打孔可以实现探针的内共振从而增强高次谐波信号强度. 本文通过有限元仿真计算获得探针第一共振频、第二共振频及其比值随着孔的尺寸和位置变化的规律. 在实验上通过聚焦离子束在探针悬臂上打孔使其第二共振频约为第一共振频的6倍, 提高了第6次谐波信号的信噪比, 并在实验室研制的高次谐波成像实验装置上获得了6次谐波图像.
-
关键词:
- 轻敲模式原子力显微镜 /
- 探针悬臂几何结构 /
- 高次谐波 /
- 聚焦离子束加工
Higher harmonics of tapping-mode atomic force microscope carries information about the mechanical properties of the sample on a nanometer scale. Unfortunately, the vibration amplitudes of traditional atomic force microscope (AFM) cantilever at higher harmonics are too small for practical AFM imaging. Ritz method demonstrates that specific cutout on the cantilever can realize internal resonance to enhance higher harmonics. In this paper, by COMSOL finite element simulation, the laws for fundamental frequency, second resonance frequency and their ratio each as a function of the size of the cutout and the position of the cutout on the cantilever are achieved. Using focused ion beam to hole the cantilever makes the second resonance frequency close to 6 times that of the fundamental frequency and also the 6th harmonic enhanced. Moreover, we obtain the image of the 6th harmonic on our home-made higher harmonic system.-
Keywords:
- tapping-mode atomic force microscope /
- the shape of probe cantilever /
- higher harmonics /
- focused ion beam fabrication
[1] Binnig G, Quate C F, Gerber C 1986 Phys. Rev. Lett. 56 930
[2] Stephen A J, Houston J E 1990 Rev. Sci. Instrum. 62 710
[3] Maivald P, Butt H J, Gould S A C, Prater C B, Drake B, Grake B, Gurley J A, Elings V B, Hansma P K 1991 Nanotechnology 2 103
[4] Heuberger M, Dietler G, Schlapbach L 1994 Nanotechnology 5 12
[5] Yamanaka K, Ogiso H, Kosolov O 1994 Appl. Phys. Lett. 64 178
[6] Fukuma T, Ichii T, Kobayashi K, Yamada H, Matsushige K 2005 Appl. Phys. Lett. 86 034103
[7] Zhong Q, Inniss D, Kjoller K, Elings V B 1993 Surf. Sci. Lett. 290 L688
[8] Fukuma T, Kilpatrick J I, Jarvis S P 2006 Rev. Sci. Instrum. 77 123703
[9] Stark R, Heckl W 2000 Surf. Sci. 457 219
[10] Hillenbrand R, Stark M, Guckenberger R 2000 Appl. Phys. Lett. 76 3478
[11] Sahin O, Yaralioglu G, Grow R, Zappe S F, Atalar A, Quate C, Solgaard O 2004 Sens. Actuat. A: Phys. 114 183
[12] Rodríguez T R, García R 2004 Appl. Phys. Lett. 84 449
[13] Sahin O, Magonov S, Su C, Quate C F, Solgaard O 2007 Nat. Nano-technol. 2 507
[14] Ribeiro P, Petyt M 1999 J. Sound. Vibr. 224 591
[15] Sadewasser S, Villanueva G, Plaza J A 2006 Rev. Sci. Instrum. 77 073703
[16] Felts J R, King W P 2009 J. Micromech. Microengin. 19 115008
[17] Bhat R B 1985 J. Sound. Vibr. 102 493
[18] Zou J X 1996 Structural Dynamics (Haerbin: Harbin Institute of Technology Press) p93 (in Chinese) [邹经湘 1996 结构动力学(哈尔滨:哈尔滨工业大学出版社) 第93页]
[19] Li Y,Qian J Q,Li Y Z 2010 Chin. Phys. B 19 050701
[20] Qian J Q, Wang X, Li Y Z, Wang W, Chen Z L, Yang R 2011 (Chinese Patent) ZL201110358206.8 (in Chinese) [钱建强, 王曦, 李英姿, 王伟, 陈注里, 阳睿 2011 中国发明专利 ZL201110358206.8]
-
[1] Binnig G, Quate C F, Gerber C 1986 Phys. Rev. Lett. 56 930
[2] Stephen A J, Houston J E 1990 Rev. Sci. Instrum. 62 710
[3] Maivald P, Butt H J, Gould S A C, Prater C B, Drake B, Grake B, Gurley J A, Elings V B, Hansma P K 1991 Nanotechnology 2 103
[4] Heuberger M, Dietler G, Schlapbach L 1994 Nanotechnology 5 12
[5] Yamanaka K, Ogiso H, Kosolov O 1994 Appl. Phys. Lett. 64 178
[6] Fukuma T, Ichii T, Kobayashi K, Yamada H, Matsushige K 2005 Appl. Phys. Lett. 86 034103
[7] Zhong Q, Inniss D, Kjoller K, Elings V B 1993 Surf. Sci. Lett. 290 L688
[8] Fukuma T, Kilpatrick J I, Jarvis S P 2006 Rev. Sci. Instrum. 77 123703
[9] Stark R, Heckl W 2000 Surf. Sci. 457 219
[10] Hillenbrand R, Stark M, Guckenberger R 2000 Appl. Phys. Lett. 76 3478
[11] Sahin O, Yaralioglu G, Grow R, Zappe S F, Atalar A, Quate C, Solgaard O 2004 Sens. Actuat. A: Phys. 114 183
[12] Rodríguez T R, García R 2004 Appl. Phys. Lett. 84 449
[13] Sahin O, Magonov S, Su C, Quate C F, Solgaard O 2007 Nat. Nano-technol. 2 507
[14] Ribeiro P, Petyt M 1999 J. Sound. Vibr. 224 591
[15] Sadewasser S, Villanueva G, Plaza J A 2006 Rev. Sci. Instrum. 77 073703
[16] Felts J R, King W P 2009 J. Micromech. Microengin. 19 115008
[17] Bhat R B 1985 J. Sound. Vibr. 102 493
[18] Zou J X 1996 Structural Dynamics (Haerbin: Harbin Institute of Technology Press) p93 (in Chinese) [邹经湘 1996 结构动力学(哈尔滨:哈尔滨工业大学出版社) 第93页]
[19] Li Y,Qian J Q,Li Y Z 2010 Chin. Phys. B 19 050701
[20] Qian J Q, Wang X, Li Y Z, Wang W, Chen Z L, Yang R 2011 (Chinese Patent) ZL201110358206.8 (in Chinese) [钱建强, 王曦, 李英姿, 王伟, 陈注里, 阳睿 2011 中国发明专利 ZL201110358206.8]
计量
- 文章访问数: 6555
- PDF下载量: 834
- 被引次数: 0